PADMASHREE KRUTARTHA ACHARYA INSTITUTE OF ENGINEERING \& TECHNOLOGY, BARGARH

PROGRESS REGISTER Session: 2022-23

3rd Semester, Electrical Engineering

Engineering Mathematics-III (TH-1)

Mr. Shubhranshu Kumar Sahu
Sr. Lect. in Mathematics

\qquad Semester From Date: 16.9.22 To Date: 20.1.25 No. of Weeks: \qquad

Date	Topics to be covered as per Lesson Plan	Topics actually covered	Points/contents Discussed (in brief)	Signature of Teacher
16.9	Complex Numbers (Define Real and Imaginary numbers), Integral power of I	Complex Numbers (Define Real and Imaginary numbers), Integral power of I	Complex Numbers (Define Real and Imaginary numbers), Integral power of I	
19.9	Algebraic Operations with complex numbers (Additions, Subtractions, Multiplications \& Divisions)	Algebraic Operations with complex numbers (Additions, Subtractions, Multiplications \& Divisions)	Algebraic Operations with complex numbers (Additions, Subtractions, Multiplications \& Divisions)	
20^{9}	Conjugate, Modulus and Amplitudes of a Complex numbers.	Conjugate, Modulus and Amplitudes of a Complex numbers.	Conjugate, Modulus and Amplitudes of a Complex numbers.	
21.9	Geometrical Representation of complex number and square roots of a complex number.	Geometrical Representation of complex number and square roots of a complex number.	Geometrical Representation of complex number and square roots of a complex number.	
$2^{3.9}$	Cube roots of unity and their properties.	Cube roots of unity and their properties.	Cube roots of unity and their properties.	
26.9	De Moivre's Theorem and solve problems.	De Moivre's Theorem and solve problems.	De Moivre's Theorem and solve problems.	1
$2^{7} 9$	Basic concepts and Rank of matrix.	Basic concepts and Rank of matrix.	Basic concepts and Rank of matrix.	
22^{69}	Elementary row transformation to determine Rank of matrix	Elementary row transformation to determine Rank of matrix	Elementary row transformation to determine Rank of matrix	
$3^{0^{-a}}$	State Rouche's Theorem for consistency of a system of linear equations in n unknowns.	State Rouche's Theorem for consistency of a system of linear equations in n unknowns.	State Rouche's Theorem for consistency of a system of linear equations in n unknowns.	
10^{10}	Linear equations in three unknowns testing consistency.	Linear equations in three unknowns testing consistency.	Linear equations in three unknowns testing consistency.	
i°	Linear Differential Equation, Homogeneous and Nonhomogeneous diff. equations with constant coefficients.	Linear Differential Equation, Homogeneous and Nonhomogeneous diff. equations with constant coefficients.	Linear Differential Equation, Homogeneous and Nonhomogeneous diff. equations with constant coefficients.	
12^{1}	General solution of linear diff. equations in terms of C.F. and P.I.	General solution of linear diff. equations in terms of C.F. and P.I.	General solution of linear diff. equations in terms of C.F. and P.I.	

\qquad - III

Semester From Date : \qquad To Date : \qquad No. of Weeks : \qquad

Date	Topics to be covered as per Lesson Plan	Topics actually covered	Points/contents Discussed (in brief)	Signature of Teacher
14_{0}^{10}	Rules of finding C.F. and P.I. in terms of operation D.	Rules of finding C.F. and P.I. in terms of operation D.	Rules of finding C.F. and P.I. in terms of operation D.	
17^{10}	Solve problems.	Solve problems.	Solve problems.	8
$6^{16^{0}}$	Solve problems.	Solve problems.	Solve problems.	
$a^{\circ} 0^{0}$	Solve problems.	Solve problems.	Solve problems.	y
21^{10}	Partial diff. equations by eliminating arbitrary constants and eliminating arbitrary function.	Partial diff. equations by eliminating arbitrary constants and eliminating arbitrary function.	Partial diff. equations by eliminating arbitrary constants and eliminating arbitrary function.	\mathcal{Y}
$v^{0^{.10}}$	Partial diff. equations of the form $P p+Q q=R$	Partial diff. equations of the form $P p+Q q=R$	Partial diff. equations of the form $P p+Q q=R$	8
$2^{6.60}$	Solve problems.	Solve problems.	Solve problems.	y
36^{10}	Solve problems.	Solve problems.	Solve problems.	8
i^{\prime}	Gamma function, $\quad \Pi(n+1)$ and find $\Pi(1 / 2)$	Gamma function, $\quad \Pi(n+1)$ and find $\Pi(1 / 2)$	Gamma function, $\Pi(\mathrm{n}+1)$ and find $\Pi(1 / 2)$	f
2	Laplace Transformation of a function $f(t)$ and transforms of elementary function.	Laplace Transformation of a function $f(t)$ and transforms of elementary function.	Laplace Transformation of a function $f(t)$ and transforms of elementary function.	
λ^{\prime}	Linearity, shifting and change of scale property of Laplace Transforms.	Linearity, shifting and change of scale property of Laplace Transforms.	Linearity, shifting and change of scale property of Laplace Transforms.	
\wedge^{\prime}	Laplace transforms of derivatives.	Laplace transforms of derivatives.	Laplace transforms of derivatives.	

Subject: \qquad No. of Days/per week class allotted \qquad Semester From Date: 16.9,22 To Date: \qquad $20 \cdot 1 \cdot 23$ No. of Weeks : \qquad 15

Selme	ter from Date $1 *$?	22 To Date 2).	23 No of Weeks	15
Date	Topics to be covered as per Lescon Plan	Topios actually covered	Points/contents Discussed (in bried)	Sgnature of Teacher
i	Finle sifterence and sum table of fonwart with evamble	Pinke differnec and form Table of tromand wit? example	Paite difterelnec and form Pable of forward with clamble	
	And backurd diterence with examples	And bachward difference with evambles	And Dackward diflerence with evamples.	
b^{7}	Factorial Notation and Solve problens	Factonal Notation and Solve problems.	Factonal Notation and Solve problems.	
17	Define shift operation (E) and establish relation between E and difference operator(s).	Define shift operation (E) and establish relation between : and difference operator(s).	Define shift operation (E) and establish relation between E and difference operator(s).	γ
$a^{\prime \prime}$	Derive Newton's forward and backward interpolation formula for equal intervals.	Derive Newton's fonward and backward interpolation formula for equal intervals.	Derive Newton's fonward and backward interpolation formula for equal intervals.	δ
0^{\prime}	Solve problems.	Solve problems.	Solve problems.	8
3°	Solve problems.	Solve problems.	Solve problems.	
	Solve problems.	Solve problems.	Solve problems.	
b^{9}	Inverse interpolation(Lagrange's interpolation formulae for unequal intervals)	Inverse interpolation(Lagrange's interpolation formulae for unequal intervals)	Inverse interpolation(Lagrange's interpolation formulae for unequal intervals)	
	Solve problems.	Solve problems.	Solve problems.	
	Numerical Integration a) Newton's Cote's formulae.	Numerical Integration a) Newton's Cote's formulae.	Numerical Integration a) Newton's Cote's formulae.	
i^{\prime}	b) Trapezoidal Rule and c) Simpson's 1/3 Rule and Solve problems.	b) Trapezoidal Rule and c) Simpson's $1 / 3$ Rule and Solve problems.	b) Trapezoidal Rule and c) Simpson's $1 / 3$ Rule and Solve problems.	δ

\qquad No. of Days/per week class allotted

Semester From Date : \qquad To Date : \qquad No. of Weeks: 15
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Date } & \begin{array}{l}\text { Topics to be covered as } \\
\text { per Lesson Plan }\end{array} & \text { Topics actually covered }\end{array}
$$ \begin{array}{l}Points/contents Discussed

(in brief)\end{array}\right]\)| Signature |
| :--- |
| of Teacher |

