
OPERATING SYSTEM

4TH SEMESTER

COMPUTER SCIENCE & ENGINEERING

MR. ASHIS BEHERA

SR. LECTURER

DEPT. OF COMP. SC. & ENGG.

PADMASHREE KRUTARTHA ACHARYA INSTITUTE

OF ENGINEERING & TECHNOLOGY,

BARGARH, ODISHA

DETAILED SYLLABUS

1. INTRODUCTION
1.1 Objectives and Explain functions of operating system.

1.2 Evolution of Operating system
1.3 Structure of operating system.

2. PROCESS MANAGEMENT

2.1 Process concept, process control, interacting processes, inter process messages.

2.2 Implementation issues of Processes.

2.3 Process scheduling, job scheduling.
2.4 Process synchronization, semaphore.
2.5 Principle of concurrency, types of scheduling.

3. MEMORY MANAGEMENT

3.1 Memory allocation Techniques

 Contiguous memory allocation

 non contiguous memory allocation

3.2 Swapping

3.3 Paging, Segmentation, virtual memory using paging,
3.4 Demand paging, page fault handling.

4. DEVICE MANAGEMENT
4.1 Techniques for Device Management

 Dedicated,

 shared and

 virtual.
4.2 Device allocation considerations I/O traffic control & I/O Schedule, I/O Device handlers.
4.3 SPOOLING.

5. DEAD LOCKS
5.1 Concept of deadlock.

5.2 System Model
5.3 Dead Lock Detection
5.4 Resources allocation Graph
5.5 Methods of Deadlock handling
5.6 Recovery &Prevention, Explain Bankers Algorithm & Safety Algorithm

6. FILE MANAGEMENT
6.1 File organization, Directory & file structure, sharing of files
6.2 File access methods, file systems, reliability
6.3 Allocation of disk space
6.4 File protection, secondary storage management.

7. SYSTEM PROGRAMMING

7.1 Concept of system programming and show difference from Application Complier
7.2 Compiler , functions of compiler
7.3 Compare compiler and interpreter
7.4 Seven phases of compiler, brief description of each phase.

1

Operating System – Overview

An Operating System (OS) is an interface between a computer user and computer

hardware. An operating system is a software which performs all the basic tasks like

file management, memory management, process management, handling input and

output, and controlling peripheral devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System, Windows

Operating System, VMS, OS/400, AIX, z/OS, etc.

Definition

An operating system is a program that acts as an interface between the user and the

computer hardware and controls the execution of all kinds of programs.

Following are some of important functions of an operating System.

 Memory Management Memory Management

2

 Memory Management Processor Management

 Memory Management Device Management

 Memory Management File Management

 Memory Management Security

 Memory Management Control over system performance

 Memory Management Job accounting

 Memory Management Error detecting aids

 Memory Management Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory.

Main memory is a large array of words or bytes where each word or byte has its

own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For

a program to be executed, it must in the main memory. An Operating System does

the following activities for memory management:

 Memory Management Keeps tracks of primary memory, i.e., what part of it

are in use by whom, what part are not in use.

 Memory Management In multiprogramming, the OS decides which process

will get memory when and how much.

 Memory Management Allocates the memory when a process requests it to do

so.

 Memory Management De-allocates the memory when a process no longer

needs it or has been terminated.

Processor Management

3

In multiprogramming environment, the OS decides which process gets the processor

when and for how much time. This function is called process scheduling. An

Operating System does the following activities for processor

 management:

 Memory Management Keeps tracks of processor and status of process. The

program responsible for this task is known as traffic controller.

 Memory Management Allocates the processor (CPU) to a process.

Device Management

An Operating System manages device communication via their respective drivers.

It does the following activities for device management:

 Memory Management Keeps tracks of all devices. The program responsible

for this task is known as the I/O controller.

 Memory Management Decides which process gets the device when and for

how much time.

 Memory Management Allocates the device in the most efficient way.

 Memory Management De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage.

These directories may contain files and other directions. An Operating System does

the following activities for file management:

 Memory Management Keeps track of information, location, uses, status etc.

The collective facilities are often known as file system.

 Memory Management Decides who gets the resources.

4

 Memory Management Allocates the resources.

 Memory Management De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System performs:

 Memory Management Security -- By means of password and similar other

techniques, it prevents unauthorized access to programs and data.

 Memory Management Control over system performance -- Recording

delays between request for a service and response from the system.

 Memory Management Job accounting -- Keeping track of time and resources

used by various jobs and users.

 Memory Management Error detecting aids -- Production of dumps, traces,

error messages, and other debugging and error detecting aids.

 Memory Management Coordination between other software and users --

Coordination and assignment of compilers, interpreters, assemblers and other

software to the various users of the computer systems.

Batch processing

Batch processing is a technique in which an Operating System collects the

programs and data together in a batch before processing starts. An operating

system does the following activities related to batch processing −

 The OS defines a job which has predefined sequence of commands,

programs and data as a single unit.

5

 The OS keeps a number a jobs in memory and executes them without any

manual information.

 Jobs are processed in the order of submission, i.e., first come first served

fashion.

 When a job completes its execution, its memory is released and the output

for the job gets copied into an output spool for later printing or processing.

Advantages

 Batch processing takes much of the work of the operator to the computer.

 Increased performance as a new job gets started as soon as the previous job is

finished, without any manual intervention.

Disadvantages

 Difficult to debug program.

 A job could enter an infinite loop.

 Due to lack of protection scheme, one batch job can affect pending jobs.

6

Multitasking

Multitasking is when multiple jobs are executed by the CPU simultaneously by

switching between them. Switches occur so frequently that the users may interact

with each program while it is running. An OS does the following activities related

to multitask −

 The user gives instructions to the operating system or to a program directly,

and receivesan immediate response.

 The OS handles multitasking in the way that it can handle multiple

operations/executes multiple programs at a time.

 Multitasking Operating Systems are also known as Time-sharing systems.

 These Operating Systems were developed to provide interactive use of a

computer system at a reasonable cost.

A time-shared operating system uses the concept of CPU scheduling and

multiprogramming to provide each user with a small portion of a time-shared CPU.

Each user has at least one separate program in memory.

7

A program that is loaded into memory and is executing is commonly referred to as a

process. When a process executes, it typically executes for only a very short time

before it either finishes or needs to perform I/O. Since interactive I/O typically runs

at slower speeds, it may take a long time to complete. During this time, a CPU can

be utilized by another process.

The operating system allows the users to share the computer simultaneously. Since

each action or command in a time-shared system tends to be short, only a little CPU

time is needed for each user.

As the system switches CPU rapidly from one user/program to the next, each user is

given the impression that he/she has his/her own CPU, whereas actually one CPU is

being shared among many users.

Multiprogramming

Sharing the processor, when two or more programs reside in memory at the same

time, is referred as multiprogramming. Multiprogramming assumes a single

shared processor. Multiprogramming increases CPU utilization by organizing

jobs so that the CPU always has one to execute.

The following figure shows the memory layout for a multiprogramming system.

8

An OS does the following activities related to multiprogramming.

 The operating system keeps several jobs in memory at a time.

 This set of jobs is a subset of the jobs kept in the job pool.

 The operating system picks and begins to execute one of the jobs in the

memory.

Multiprogramming operating systems monitor the state of all active programs

and system resources using memory management programs to ensure that the

CPU is never idle, unless there are no jobs to process.

Advantages

 High and efficient CPU utilization.

 User feels that many programs are allotted CPU almost simultaneously.

Disadvantages

 CPU scheduling is required.

 To accommodate many jobs in memory, memory management is required.

Interactivity

Interactivity refers to the ability of users to interact with a computer system. An

Operating system does the following activities related to interactivity −

 Provides the user an interface to interact with the system.

 Manages input devices to take inputs from the user. For example, keyboard.

 Manages output devices to show outputs to the user. For example, Monitor.

 The response time of the OS needs to be short, since the user submits and

waits for the result.

Real Time System

9

Real-time systems are usually dedicated, embedded systems. An operating

system does the following activities related to real-time system activity.

 In such systems, Operating Systems typically read from and react to sensor

data.

 The Operating system must guarantee response to events within fixed periods

of time to ensure correct performance.

Distributed Environment

A distributed environment refers to multiple independent CPUs or processors in

a computer system. An operating system does the following activities related to

distributed environment −

 The OS distributes computation logics among several physical processors.

 The processors do not share memory or a clock. Instead, each processor has

its own local memory.

 The OS manages the communications between the processors. They

communicate with each other through various communication lines.

Spooling

Spooling is an acronym for simultaneous peripheral operations on line. Spooling

is a process in which data is temporarily held to be used and executed by a device,

program, or system. Data is sent to and stored in memory or other volatile storage

until the program or computer requests it for execution. SPOOL is an acronym for

simultaneous peripheral

Operations online.

. An operating system does the following activities related to distributed

environment −

10

 Handles I/O devices data spooling as devices’ have different data access rates.

 Maintains the spooling buffer which provides a waiting station where data can

rest while the slower device catches up.

Maintains parallel computation because of spooling process as a computer can

perform I/O in parallel fashion. It becomes possible to have the computer read data

from a tape, write data to disk and to write out to a tape printer while it is doing its

computing task.

Advantages

 The spooling operation uses a disk as a very large buffer.

 Spooling is capable of overlapping I/O operation for one job with processor

operations for another job.

11

OPERATING SYSTEM STRUCTURE - I

Operating System Structure:

The structure of an operating system is dictated by the model employed in building

them. An operating system model is a broad framework that unifies the many

features and services the operating system provides and tasks it performs. Operating

systems are broadly classified into following categories, based on the their

structuring mechanism as follows:

a. Monolithic System

b. Layered System

c. Virtual Machine

d. Exokernels

e. Client-Server Model

Monolithic System

The components of monolithic operating system are organized haphazardly and any

module can call any other module without any reservation. Similar to the other

operating systems, applications in monolithic OS are separated from the operating

system itself. That is, the operating system code runs in a privileged processor

mode (referred to as kernel mode), with access to system data and to the hardware;

applications run in a non-privileged processor mode (called the user mode), with a

limited set of interfaces available and with limited access to system data. The

monolithic operating system structure with separate user and kernel processor mode

is shown in Figure.

12

This approach might well be subtitled "The Big Mess." The structure is that there is

no structure. The operating system is written as a collection of procedures, each of

which can call any of the other ones whenever it needs to. When this technique is

used, each procedure in the system has a well-defined interface in terms of

parameters and results, and each one is free to call any other one, if the latter

provides some useful computation that the former needs. Example Systems: CP/M

and MS-DOS

13

Layered Operating System

The layered approach consists of breaking the operating system into the number of

layers(level), each built on the top of lower layers. The bottom layer (layer 0) is the

hardware layer; the highest layer is the user interface.

The main advantages of the layered approach is modularity. The layers are selected

such that each uses functions (operations) and services of only lower-level layers.

This approach simplifies debugging and system verifications. That is in this

approach, the Nth layer can access services provided by (N-1)th layer and provide

services to the (N+1)th layer. This structure also allows the operating system to be

debugged starting at the lowest layer, adding one layer at a time until the whole

system works correctly. Layering also makes it easier to enhance the operating

system; one entire layer can be replaced without affecting other parts of the system.

14

The layer approach to design was first used in the operating system at the

Technische Hoge school Eindhoven. The system was defined in the six layers , as

shown in the fig below. Example Systems: VAX/VMS, Multics, UNIX

Process

A process is basically a program in execution. The execution of a process must

progress in a sequential fashion. A process is defined as an entity which

represents the basic unit of work to be implemented in the system.

To put it in simple terms, we write our computer programs in a text file and when

we execute this program, it becomes a process which performs all the tasks

mentioned in the program. When a program is loaded into the memory and it

becomes a process, it can be divided into four sections stack, heap, text and data.

15

The following image shows a simplified layout of a process inside main memory

−

S.N Component & Description

1 Stack

The process Stack contains the temporary data such as method/function parameters, return

address and local variables.

2 Heap

 This is dynamically allocated memory to a process during its run time.

3 Text

This includes the current activity represented by the value of Program Counter and the contents

of the processor’s registers.

4 Data

 This section contains the global and static variables.

Program

A program is a piece of code which may be a single line or millions of lines. A

computer program is usually written by a computer programmer in a

programming language.

16

For example, here is a simple program written in C programming language −

#include <stdio.h>

int main() {

printf("Hello, World! \n");

return 0;

}

A computer program is a collection of instructions that performs a specific task

when executed by a computer. When we compare a program with a process, we

can conclude that a process is a dynamic instance of a computer program.

A part of a computer program that performs a well-defined task is known as an

algorithm. A collection of computer programs, libraries and related data are

referred to as software.

Process Life Cycle

When a process executes, it passes through different states. These stages may

differ indifferent operating systems, and the names of these states are also not

standardized.

In general, a process can have one of the following five states at a time.

S.N State & Description

1 Start

 This is the initial state when a process is first started/created.

17

2 Ready

The process is waiting to be assigned to a processor. Ready processes

are waiting to have the processor allocated to them by the operating

system so that they can run. Process may come into this state after

start state or while running it by but interrupted by the scheduler to

assign CPU to some other process.

3 Running

Once the process has been assigned to a processor by the OS

scheduler, the process state is set to running and the processor executes

its instructions.

4 Waiting

Process moves into the waiting state if it needs to wait for a resource,

such as waiting for user input, or waiting for a file to become available.

5 Terminated or Exit

Once the process finishes its execution, or it is terminated by the

operating system, it is moved to the terminated state where it waits to be

removed from main memory.

18

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System

for every process The PCB is identified by an integer process ID (PID). A PCB

keeps all the information needed to keep track of a process as listed bellow in the

table −

Sl. No. Information & Description

1 Process State

The current state of the process i.e., whether it is ready, running, waiting, or

whatever.

2 Process privileges

 This is required to allow/disallow access to system resources.

3 Process ID

 Unique identification for each of the process in the operating system.

4 Pointer

 A pointer to parent process.

5 Program Counter

Program Counter is a pointer to the address of the next instruction to be

executed for this process.

6 CPU Register

Various CPU registers where process need to be stored for execution for

running state.

7 CPU Scheduling information

 Process priority and other scheduling information process.

8 Memory Management Information

This includes the information of page table, memory limits, Segment

table depending on memory used by the operating system.

19

9 Accounting information

This includes the amount of CPU used for process execution, time limits,

execution ID etc.

10 I/O status information

 This includes a list of I/O devices allocated to the process.

The architecture of a PCB is completely dependent on Operating System and

may contain different information indifferent operating systems. The PCB is

maintained for a process throughout its lifetime, and is deleted once the process

terminates. Here is a simplified diagram of a PCB –

20

PROCESS COMMUNICATIONS

Inter-process communication is the mechanism provided by the operating system

that allows processes to communicate with each other. This communication could

involve a process letting another process know that some event has occurred or

the transferring of data from one process to another.

PROCESS COMMUNICATIONS

PROCESS COMMUNICATIONS

Processes can communicate with themselves in two ways.

Message-passing model

Shared memory model

Message-passing model: Here the information is exchanged through an

interprocess communication which is provided by the operating system.

Process A M

Process B M

 Karnel M

21

• The communication among processes takes place by system calls get hostid,

get processid, open connection, close connection, accept connection, wait for

connection, read message and write message.

• Before the communication, a connection should be opened between

communicating processes

• The name of the communicating processes must be known to operating system

at priori.

• Each computer in a network has a host name and each process has a process

name.

• The process wants to communicate first execute the open connection system

call and then get hostid and get processid call of the recipient process and send it

to the karnel along with message.

• The karnel sends a request for a connection to the recipient process. If the

recipient process is not ready then it must wait.

• When the recipient process is ready , then the recipient process execute accept

connection.

• Once the connection between karnel and the recipient process is open, the

message is then send.

• Once the message exchange completed, both the process execute close

connection system call.

• Message passing communication is useful when small number of data needs to

be exchanged.

Shared memory model: Here the information is exchanged through a memory

shared by both the processors.

Process A Shared memory Process B

22

• The communication among processes takes place by executing map memory

system call.

• Before communication through shared memory , both the processor should

agree to share their memory.

• They may then exchange information by reading and writing data in these

shared memory.

• The form of data and the location are determined by these processes and are

not under the control of operating system.

• Shared memory communication is useful when large number of data needs to

be exchanged with maximum speed.

Process Communications

In addition to above , logically several methods can be implemented to established

link between two processes and send , receive operations to achieve interprocess

communication.

1. Direct Communication

2. Indirect Communication

23

3. Symmetric communication

4. Asymmetric communication

5. Automatic buffering communication

Direct Communication

Here each process that wants to communicate must explicitly address the recipient

or sender of the communication i.e. this direct communication shows symmetry in

addressing. Hence this type of communication also known as Symmetric

communication.

• A link is established automatically between each pair of process who wants to

communicate. i.e. each process needs to know the identity of other process to

communicate.

• Between each pair of processes , there exists exactly one link.

• The link may be unidirectional or bidirectional.

 SEND (P, Msg)

 RECEIVE (Q, Msg)

The sender process execute the send(P , message) operation to send the message to

the process P.

• The receiver process execute receive(Q , message) operation to receive a

message from process Q which notify the process Q that the message has been

consumed.

24

Asymmetric communication

• Here only the sender process explicitly address the recipient.

• A link is established automatically between each pair of process who wants to

communicate. Here the sender must know the identity of the recipient.

• Between each pair of processes , there exists exactly one link.

• The link may be unidirectional.

• The sender process execute the send(P , message) operation to send the

message to the process P.

• The receiver process execute receive(id , message) operation to receive a

message from any process.

• Both symmetric and Asymmetric communication has limited modularity i.e.

changing the name of one process may necessitate examining all other process

definitions.

Indirect Communication:

Here communication can be done through a mailbox which can be viewed

abstractly as an object into which message can be placed by a process and from

which message can be removed.

• Each mailbox has unique identification.

• A link will be established between at most a single pair of

processes who shared the mailbox.

QSend

(P, Msg)

Receive

(id, Msg)

25

 Send(A , msg) Receive(A , msg)

 Process Message Process

• This link can be unidirectional or bidirectional.

• Now the process who wants to send message can send the message to the

mailbox by calling send(A , msg) where A is the id of mailbox.

• The receiver will receive the message from Mailbox A by calling receive(A,

msg).

A mailbox can be owned either by a process or by the operating system. Mailbox

owned by process:

• Here the mailbox is attached to a process.

• The process to whom the mailbox is attached is declared as the owner who

can only receive message through this mailbox.

• Other processes who use this mailbox can only send message into this

mailbox.

• When the owner of the mailbox terminates , the mailbox will disappear and all

other processes who share the mailbox will be notified that this mailbox is no

longer exist.

Mailbox owned by operating system:

• Here mailbox is independent and not attached to any process.

• The operating system allow a process to create the mailbox and that process

become the owner of that mailbox.

• The owner process can only receive the message.

• This ownership and receive privilege can be passed to another process

through proper system call.

26

• When the mailbox is no longer used by any process, the operating system

should reclaim the space provided to mailbox by calling garbage collector.

Automatic buffering:

• Here a link will be established between the processes who wants to

communicate.

• The link may reside the message temporarily.

• A process wants to communicate, sends a message to other process. The

message will be send without any delay.

• After receiving, the process acknowledge the sender with proper signal.

Let Process P wants to send message to Process Q.

process P executes the sequence

• Send (Q, Msg)

• Receive(Q,msg)

Then process Q executes the sequence

• Receive (P, Msg)

• Send(P, ‘Ack’)

In the case of Automatic Buffering, the link may have Zero capacity, Bounded

capacity or Unbounded capacity.

Zero capacity link-

• This is also known as automatic buffering .

• The queue has maximum length 0 i.e. the link can not have any message

waiting in it. Here the sender and receiver must synchronized for a message to be

transferred.

Bounded capacity & Unbounded capacity:

27

• Here the queue has finite length n but it is infinite length for unbounded

capacity

• if the queue is not full, the sender is sending the message continuously

(Bounded).

• If the queue is full, then the sender must wait until space is available in the

queue (Bounded).

• In case of Unbounded capacity any number of message can wait in the link

but the sender never delayed.

Process Control Block

• Each process is represented in the operating system by a Process Control

Block (PCB) or Task Control Block.

• A Process Control Block is a data structure maintained by the Operating

System for every processes.

• The PCB is identified by an integer process ID (PID) which keeps all the

information needed to keep track of a process.

28

Process

State
Pointer

Process Number

Program Counter

Register

Memory limits

List of open files

Process State- The current state of the process i.e. whether it is new, ready,

running, waiting, halted and so on.

• Pointer -A pointer to parent process.

• Process Number - Unique identification for each of the process in the

operating system.

• Program counter- The counter indicates the address of the next instruction to

be executed for this process.

• Memory management information - This includes the information of page

table, memory limits, Segment table depending on memory used by the operating

system.

• Register- The registers may vary in numbers and types, depending on the

computer architecture. They may be accumulator, index register, stack pointer,

general purpose register etc. these registers are being used to save the state

information of a process when an interrupt occurs, and allow the process to be

continued correctly afterwards.

29

• List of open files – These are the files which are currently being used by the

process in execution.

Beyond these other information may also stored in the PCB.

CPU scheduling information – this includes a process priority, pointer to

scheduling queue and other scheduling parameters. Accounting Information – It

includes the amount of CPU and real time used, time limits, account numbers, job

or process number and so on.

I/O status information – It includes the list of I/O devices allocated to this process,

list of open files and so on.

30

CPU Scheduling Algorithm

CPU Scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated first to the CPU. There are four types of CPU

scheduling that exist.

• FCFS Scheduling

• Priority Scheduling

• SJF Scheduling

• Round Robin Scheduling

These algorithms are either non-pre-emptive or pre-emptive. Non-pre-emptive

algorithms are designed so that once a process enters the running state, it cannot

be pre-empted until it completes its allotted time, whereas the pre-emptive

scheduling is based on priority where a scheduler may pre-empt a low priority

running process anytime when a high priority process enters into a ready state.

First Come, First Served Scheduling (FCFS) Algorithm

• This is the simplest CPU scheduling algorithm. In this scheme, the process

which requests the CPU first, that is allocated to the CPU first.

• The implementation of the FCFS algorithm is easily managed with a FIFO

queue.

• When a process enters the ready queue its PCB is linked onto the rear of the

queue.

• The average waiting time under FCFS policy is quiet long.

Consider the following example:

Let four processors having their CPU execution time as mentioned in the table

coming into the ready queue. Now find the average waiting time and average turn

around time of the processes if they enter into the queue in P1 P2 P3 P4 order.

31

Solution:

If the process arrived in the order P1, P2, P3, P4 then according to the FCFS

the Gantt chart will be:

 P1 P2 P3 P4

0 3 8 10 14

Process CPU Time waiting time

P1 3 0

P2 5 3

P3 2 8

P4 4 10

FCFS Scheduling Algorithm

The turnaround time for process

P1=0+3=3,

P2=3+5=8,

P3=8+2=10,

P4=10+4=14.

Then average waiting time = (0 + 3 + 8 + 10)/4 = 21/4 = 5.25

Average turnaround time = (3 + 8 + 10 + 14)/4 = 35/4 = 8.75

The FCFS algorithm is non preemptive means once the CPU has been allocated to

a process then the process keeps the CPU until the release the CPU either by

terminating or requesting I/O.

32

Example 2: The waiting time will be shown in the Gantt’s chart as below

Wait time of each process is as follows −

Average Wait Time:(0+4+6+13)/ 4 = 5.75

Process Arrival Time Execution Time Service Time

P0 0 5 0

P1 1 3 5

P2 2 8 8

P3 3 6 16

33

Shortest Job First(SJF) Scheduling Algorithm

This algorithm associates with each process if the CPU is available. This

scheduling is also known as shortest next CPU burst, because the scheduling is

done by examining the length of the next CPU burst of the process rather than its

total length

• This is a non pre-emptive / pre-emptive scheduling algorithm.

• Best approach to minimize waiting time.

• Easy to implement in Batch systems where required CPU time is known in

advance.

• Impossible to implement in interactive systems where required

CPU time is not known.

• The processer should know in advance how much time a process

will take.

SJF Scheduling Algorithm

Example 1: Find the average waiting time & average turn around time.

Solution:

According to the SJF the Gantt chart will be

34

SJF Scheduling Algorithm

The waiting time for process P3 = 0, P1 = 2, P2 = 5, P4 = 9

The turnaround time for process P3 = 0 + 2 = 2, P1 = 2 + 3 = 5,

P2=5+4=9,P4=9+5=14.

Then average waiting time = (0 + 2 + 5 + 9)/4 = 16/4 = 4

Average turnaround time = (2 + 5 + 9 + 14)/4 = 30/4 = 7.5

The SJF algorithm may be either preemptive or non preemptive algorithm.

SJF Scheduling Algorithm

The preemptive SJF is also known as shortest remaining time first.

Example 2: Consider the following processes having CPU burst time are arriving

into the ready queue as shown in the table. Find the average waiting time.

The waiting time for process

P1=10-1=9

P2=1–1=0

P3=17–2=15

P4=5–3=2

The average waiting time = (9 + 0 + 15 + 2)/4 = 26/4 = 6.5

35

Example: 3 Find Average waiting time.

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21 / 4 = 5..25

Priority Scheduling Algorithm

In this scheduling a priority is associated with each process and the CPU is

allocated to the process with the highest priority. Equal priority processes are

scheduled in FCFS manner. Priority scheduling is a non-preemptive algorithm and

one of the most common scheduling algorithms in batch systems. Each process is

assigned a priority. Process with highest priority is to be executed first and so on.

Processes with same priority are executed on first come first served basis. Priority

can be decided based on memory requirements, time requirements or any other

resource requirement.

36

Examples: Find the waiting time of each process and average waiting time.(Least

arrival time is highest priority).

Sol: According to the priority scheduling the Gantt chart will be

The waiting time for process

P1=6

P2=0

P3=16

P4=18

P4=1

The average waiting time=(0+1+6+16+18)/5=41/5=8.2

Process CPU time Arrival time

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

37

Examples: Draw the Gantt chart and find the waiting time of each process and

average waiting time.

Sol:

According to the priority scheduling the Gantt chart will be

P0 P1 P1 P3 P1 P0 P2 P2

0 1 2 3 9 10 14 22

The waiting time for process

P0 = 10-0-1=9

P1=9-1-2=6

P2 = 14-2-0=12

P3 = 3-3-0=0

The average waiting time =(9+6+12+0)/4=27/4=6.75

Round Rabin Scheduling Algorithm

This type of algorithm is designed only for the time sharing system. It is similar to

FCFS scheduling with preemption condition to switch between processes. A small

unit of time called quantum time or time slice is used to switch between the

processes. Context switching is used to save states of pre-empted processes. Once

a process is executed for a given time period, it is pre-empted and other process

Process CPU time Arrival time Priority

P0 5 0 1(Lowest)

P1 3 1 2

P2 8 2 1

P3 6 3 3(highest)

38

executes for a given time period. The average waiting time under the round robin

policy is quiet long.

Example: Draw the Gantt chart and find the waiting time of each process and also

the average waiting time(Tme Slice=1 Milli Sec.).

Sol: The Gantt chart is given below

The waiting time for process

P1=0+(4–1)+(8–5)=0+3+3=6

P2=1+(5–2)+(9–6)+(11–10)+ (13–12)=1+3+3+1+1=9

P3=2+(6–3)=2+3=5

P4=3+(7–4)+(10–8)+(12–11)=3+3+2+1=9

The average waiting time = (6 + 9 + 5 + 9)/4 =29/4= 7.25

Process CPU time

P1 3

P2 5

P3 2

P4 4

39

Example:

Draw the Gantt chart and find the waiting time of each process and also the

average waiting time(Tme Slice=3 Milli Sec.).

Sol: The Gantt chart is given below

The waiting time for process

P0=(0-0)+(12-3)=9

P1=(3-1)=2

P2=(6-2)+(14-9)+(20-17)=12

P3=(9-3)+(17-12)=11

The average waiting time = (9 + 2+ 12 + 11)/4 =34/4= 8.5

Process CPU time Arrival Time

P0 5 0

P1 3 1

P2 8 2

P3 6 3

40

Memory Management

1. Memory allocation techniques

a. Contiguous memory allocation

b. Non contiguous memory allocation

2. Swapping

3. Paging

a. Segmentation, virtual memory using paging

4. Demand paging, page fault handling

Memory Management

Some of the issues involved in the main memory.

Allocation: First of all the processes that are scheduled to run must be resident in

the memory. These processes must be allocated space in main memory.

Swapping, fragmentation and compaction: If a program is moved out or

terminates, it creates a hole, (i.e. a contiguous unused area) in main memory. When

a new process is to be moved in, it may be allocated one of the available holes. It is

quite possible that main memory has far too many small holes at a certain time. In

such a situation none of these holes is really large enough to be allocated to a new

process that may be moving in. The main memory is too fragmented. It is,

therefore, essential to attempt compaction. Compaction means OS re-allocates the

existing programs in contiguous regions and creates a large enough free area for

allocation to a new process.

41

Garbage collection: Some programs use dynamic data structures. These programs

dynamically use and discard memory space. Technically, the deleted data items

(from a dynamic data structure) release memory locations. However, in practice the

OS does not collect such free space immediately for allocation. This is because that

affects performance. Such areas, therefore, are called garbage. When such garbage

exceeds a certain threshold, the OS would not have enough memory available for

any further allocation. This entails compaction (or garbage collection), without

severely affecting performance.

Protection: With many programs residing in main memory it can happen that due

to a programming error (or with malice) some process writes into data or instruction

area of some other process. The OS ensures that each process accesses only to its

own allocated area, i.e. each process is protected from other processes.

Virtual memory: Often a processor sees a large logical storage space (a virtual

storage space) though the actual main memory may not be that large. So some

facility needs to be provided to translate a logical address available to a processor

into a physical address to access the desired data or instruction.

IO support: Most of the block-oriented devices are recognized as specialized files.

Their buffers need to be managed within main memory alongside the other

processes. The considerations stated above motivate the study of main memory

management. One of the important considerations in locating an executable

program is that it should be possible to relocate it any where in the main memory.

Memory allocation

Let us assume the main memory is a linear map or one-dimensional array. If the

address is known then its content can be fetched. So, a process residing in the main

memory, set the program counter to an absolute address of its first instruction and

can initiate its run. Also, if the locations of data is known then it can be fetched.

42

This means that a process can be load with only absolute addresses for instructions

and data, only when those specific addresses are free in main memory. But This

will loose flexibility with regard to loading a process. For instance, we cannot load

a process, if some other process is currently occupying that area which is needed by

this process. This may happen even though we may have enough space in the

memory. To avoid this processes are generated to be relocatable.

Initially, all the addresses in the process are relative to the start address. With this

flexibility the OS can allocate any area in the memory to load this process. Its

instruction, data, process context (process control block) and any other data

structure required by the process can be accessed easily if the addresses are relative.

Suppose a process created a hole on moving out. If non-relocatable addresses are to

be used then severe problem can occur.

When the process moves back in, that particular hole (or area) may not be available

any longer. In case we can relocate, moving a process back in creates no problem.

This is so because the process can be relocated in some other free area.

Contiguous memory allocation:

Contiguous memory allocation is a classical memory allocation model that assigns a

process consecutive memory blocks (that is, memory blocks having consecutive

43

addresses). When a process needs to execute, memory is requested by the process.

The size of the process is compared with the amount of contiguous main memory

available to execute the process. If sufficient contiguous memory is found, the

process is allocated memory to start its execution. Otherwise, it is added to a queue

of waiting processes until sufficient free contiguous memory is available.

The contiguous memory allocation scheme can be implemented in operating

systems with the help of two registers, known as the base and limit registers. When

a process is executing in main memory, its base register contains the starting

address of the memory location where the process is executing, while the amount of

bytes consumed by the process is stored in the limit register. A process does not

directly refer to the actual address for a corresponding memory location. Instead, it

uses a relative address with respect to its base register. All addresses referred by a

program are considered as virtual addresses. The CPU generates the logical or

virtual address, which is converted into an actual address with the help of the

memory management unit (MMU). The base address register is used for address

translation by the MMU. Thus, a physical address is calculated as follows:

Physical Address = Base register address + Logical address/Virtual address

The address of any memory location referenced by a process is checked to ensure

that it does not refer to an address of a neighboring process. This processing

security is handled by the underlying operating system.

One disadvantage of contiguous memory allocation is that the degree of

multiprogramming is reduced due to processes waiting for free memory.

44

Non-contiguous memory allocation:

Noncontiguous memory allocation assigns the separate memory blocks at a

different location in memory space in a nonconsecutive manner to a process

requesting for memory. The noncontiguous memory allocation also reduces the

memory wastage caused due to internal and external fragmentation. As it utilizes

the memory holes, created during internal and external fragmentation.

Difference between contiguous and non contiguous memory allocation

BASIS Contiguous memory allocation
Noncontiguous memory

allocation

Operation Allocates consecutive block of

memory to a process

Allocates separate block of

memory to a process

Overhead

Contiguous memory allocation

does not have the overhead of

address translation while execution

of a process

Non-Contiguous memory

allocation does not have the

overhead of address translation

while execution of a process

Execution

rate

A process executes faster in

contiguous memory allocation

A process executes quite

slower comparatively in

noncontiguous memory allocation

Solution

The memory space must be divided

into the fixed-sized partition and

each partition is allocated to a

single process only

Divide the process into several

blocks and place them in different

parts of the memory according to

the availability of memory space

Table

A table is maintained by operating

system which maintains the list of

available and occupied partition in

the memory space

A table has to be maintained for

each process that carries the base

addresses of each block which has

been acquired by a process in

memory

Types of memory allocation:

1. Best fit memory allocation: In this method, the operating system first

searches the whole of the memory according to the size of the given job and

45

allocates it to the closest-fitting free partition in the memory, making it able to use

memory efficiently. Here the jobs are in the order from smallest job to largest job.

2. Worst fit memory allocation: Worst Fit allocates a process to the partition

which is largest sufficient among the freely available partitions available in the

main memory. If a large process comes at a later stage, then memory will not have

space to accommodate it.

3. first fit memory allocation: This method keeps the free/busy list of jobs

organized by memory location, low-ordered to high-ordered memory. In this

method, first job claims the first available memory with space more than or equal

to it’s size. The operating system doesn’t search for appropriate partition but just

allocate the job to the nearest memory partition available with sufficient size.

SWAPPING :

Swapping is a mechanism in which a process can be swapped temporarily out of

main memory (or move) to secondary storage (disk) and make that memory

available to other processes. At some later time, the system swaps back the process

from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps in running

multiple and big processes in parallel.

46

The total time taken by swapping process includes the time it takes to move the

entire process to a secondary disk and then to copy the process back to memory, as

well as the time the process takes to regain main memory.

Let us assume that the user process is of size 2048KB and on a standard hard disk

where swapping will take place has a data transfer rate around 1 MB per second.

The actual transfer of the 1000K process to or from memory will take

2048KB / 1024KB per second= 2 seconds =2000 milliseconds

Now considering in and out time, it will take complete 4000 milliseconds plus other

overhead where the process competes to regain main memory.

FRAGMENTATION :

As processes are loaded and removed from memory, the free memory space is

broken into little pieces. It happens after sometimes that processes cannot be

allocated to memory blocks considering their small size and memory blocks

remains unused. This problem is known as Fragmentation. Fragmentation is of two

types −

External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it

is not contiguous, so it cannot be used.

Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left

unused, as it cannot be used by another process.

47

External fragmentation can be reduced by compaction or shuffle memory contents

to place all free memory together in one large block. To make compaction feasible,

relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the smallest

partition but large enough for the process.

PAGING :

A computer can address more memory than the amount physically installed on the

system. This extra memory is actually called virtual memory and it is a section of a

hard that's set up to emulate the computer's RAM. Paging technique plays an

important role in implementing virtual memory.

Paging is a memory management technique in which process address space is

broken into blocks of the same size called pages (size is power of 2, between 512

bytes and 8192 bytes). The size of the process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical)

memory called frames and the size of a frame is kept the same as that of a page to

have optimum utilization of the main memory and to avoid external fragmentation.

48

Address Translation:

Page address is called logical address and represented by page number and the

offset.

Logical Address = Page number + page offset Frame address is called physical

address and represented by a frame number and the offset. Physical Address =

Frame number + page offset

A data structure called page map table is used to keep track of the relation between

a page of a process to a frame in physical memory.

When the system allocates a frame to

any page, it translates this logical

address into a physical address and

create entry into the page table to be

used throughout execution of the

program.

When a process is to be executed, its corresponding pages are loaded into any

available memory frames. Suppose you have a program of 8Kb but your memory

can accommodate only 5Kb at a given point in time, then the paging concept will

come into picture. When a computer runs out of RAM, the operating system (OS)

will move idle or unwanted pages of memory to secondary memory to free up

RAM for other processes and brings them back when needed by the program. This

process continues during the whole execution of the program where the OS keeps

removing idle pages from the main memory and write them onto the secondary

memory and bring them back when required by the program.

49

Advantages and Disadvantages of Paging:

Paging reduces external fragmentation, but still suffer from internal fragmentation.

Paging is simple to implement and assumed as an efficient memory management

technique. Due to equal size of the pages and frames, swapping becomes very easy.

Page table requires extra memory space, so may not be good for a system having

small RAM.

5. VIRTUAL MEMORY:

A computer can address more memory than the amount physically installed on the

system. This extra memory is actually called virtual memory and it is a section of a

hard disk that's set up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than

physical memory. Virtual memory serves two purposes. First, it allows us to extend

the use of physical memory by using disk. Second, it allows us to have memory

protection, because each virtual address is translated to a physical address.

Following are the situations, when entire program is not required to be loaded fully

in main memory.

User written error handling routines are used only when an error occurred in the

data or computation. Certain options and features of a program may be used rarely.

Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used. The ability to execute a program that is only

partially in memory would counter many benefits. Less number of I/O would be

needed to load or swap each user program into memory. A program would no

longer be constrained by the amount of physical memory that is available.

50

Each user program could take less physical programs could be run the same time,

with a increase in CPU utilization and throughput. Modern microprocessors

intended for general-purpose management unit, or MMU, is built into the hardware.

is to translate virtual addresses into physical addresses the figure.

51

6. DEMAND PAGING:

A demand paging system is quite similar to a paging system with swapping where

processes reside in secondary memory and pages are loaded only on demand, not in

advance. When a context switch occurs, the operating system does not copy any of

the old program’s pages out to the disk or any of the new program’s pages into the

main memory Instead, it just begins executing the new program after loading the

first page and fetches that program’s pages as they are referenced.

While executing a program, if the program references a page which is not available

in the main memory because it was swapped out a little ago, the processor treats

this invalid memory reference as a page fault and transfers control from the

program to the operating system to demand the page back into the memory.

Advantages:

Following are the advantages of Demand Paging −

Large virtual memory.

More efficient use of memory.

There is no limit on degree of multiprogramming.

52

Disadvantages:

Number of tables and the amount of processor overhead for handling page

interrupts are greater than in the case of the simple paged management techniques.

 PAGE FAULT AND PAGE FAULT HANDLING :

A page fault occurs when a program attempts to access data or code that is in its

address space, but is not currently located in the system RAM. So when page

fault occurs then following sequence of events happens :

The computer hardware traps to the kernel and program counter (PC) is saved

on the stack. Current instruction state information is saved in CPU registers.

An assembly program is started to save the general registers and other volatile

information to keep the OS from destroying it.

Operating system finds that a page fault has occurred and tries to find out which

virtual page is needed. Some times hardware register contains this required

information. If not, the operating system must retrieve PC, fetch instruction and find

out what it was doing when the fault occurred.

Once virtual address caused page fault is known, system checks to see if address is

valid and checks if there is no protection access problem.

If the virtual address is valid, the system checks to see if a page frame is free. If no

frames are free, the page replacement algorithm is run to remove a page.

If frame selected is dirty, page is scheduled for transfer to disk, context switch

takes place, fault process is suspended and another process is made to run until disk

transfer is completed.

53

As soon as page frame is clean, operating system looks up disk address where

needed page is, schedules disk operation to bring it in.

When disk interrupt indicates page has arrived, page tables are updated to reflect

its position, and frame marked as being in normal state.

Faulting instruction is backed up to state it had when it began and PC is reset.

Faulting is scheduled, operating system returns to routine that called it.

Assembly Routine reloads register and other state information, returns to user space

to continue execution.

PAGE REPLACEMENT ALGORITHM:

Page replacement algorithms are the techniques using which an Operating System

decides which memory pages to swap out, write to disk when a page of memory

needs to be allocated. Paging happens whenever a page fault occurs and a free page

cannot be used for allocation purpose accounting to reason that pages are not

available or the number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced

again, it has to read in from disk, and this requires for I/O completion. This process

determines the quality of the page replacement algorithm: the lesser the time

waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the

pages provided by hardware, and tries to select which pages should be replaced to

minimize the total number of page misses, while balancing it with the costs of

primary storage and processor time of the algorithm itself. There are many different

54

page replacement algorithms. We evaluate an algorithm by running it on a

particular string of memory reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are

generated artificially or by tracing a given system and recording the address of each

memory reference. The latter choice produces a large number of data, where we

note two things.

For a given page size, we need to consider only the page number, not the entire

address. If we have a reference to a page p, then any immediately following

references to page p will never cause a page fault. Page p will be in memory after

the first reference; the immediately following references will not fault.

For example, consider the following sequence of addresses −

123,215,600,1234,76,96 If page size is 100, then the reference

string is 1,2,6,12,0,0

8.1 First In First Out (FIFO) algorithm:

Oldest page in main memory is the one which will be selected for replacement.

Easy to implement, keep a list, replace pages from the tail and add new pages at the

head.

55

8.2 Optimal Page algorithm

An optimal page-replacement algorithm has the lowest page-fault rate of all

algorithms. An optimal page-replacement algorithm exists, and has been called

OPT or MIN.

Replace the page that will not be used for the longest period of time. Use the time

when a page is to be used.

8.3 Least Recently Used (LRU) algorithm

Page which has not been used for the longest time in main memory is the one

which will be selected for replacement.

Easy to implement, keep a list, replace pages by looking back into time.

56

8.4 Page buffering algorithm

To get a process start quickly, keep a pool of free frames. On page fault, select a

page to be replaced. Write the new page in the frame of free pool, mark the page

table and restart the process. Now write the dirty page out of disk and place the

frame holding replaced page in free pool.

This algorithm suffers from the situation in which a page is used heavily during the

initial phase of a process, but then is never used again.

9. SEGMENTATION:

Segmentation is a memory management technique in which each job is divided into

several segments of different sizes, one for each module that contains pieces that

perform related functions. Each segment is actually a different logical address

space of the program.

When a process is to be executed, its corresponding segmentation are loaded into

non-contiguous memory though every segment is loaded into a contiguous block of

available memory.

57

Segmentation memory management works very similar to paging but here

segments are of variable-length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions, data

structures, and so on. The operating system maintains a segment map table for

every process and a list of free memory blocks along with segment numbers, their

size and corresponding memory locations in main memory. For each segment, the

table stores the starting address of the segment and the length of the segment. A

reference to a memory location includes a value that identifies a segment and an

offset.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

DEVICE MANAGEMENT

1. Techniques for Device Management

a. Dedicated

b. Shared

c. Virtual

2. Device allocation

a. considerations I/O traffic control & I/O Schedule

b. I/O Device handlers.

3. SPOOLING.

1. Device management: Device management is responsible for managing all the

hardware devices of the computer system. It includes the management of the

storage device as well as the management of all the input and output devices of the

computer system. It does the following activities for device management −

Keeps tracks of all devices. Program responsible for this task is known as the I/O

controller. Decides which process gets the device when and for how much time.

Allocates the device in the efficient way. De-allocates devices.

There are three basic techniques for implementing a device for policy.

a) Dedicated devices: These are devices that are assigned to one process at a

time and the process only releases the device once it is completed. This includes

devices like plotters and tape drives. The problem with this is that one user is using

at a time and it might be inefficient if the device is not being used 100% of time

that it is being locked by the user.

72

b) Shared devices: these are devices that can be shared by many processes.

This includes devices like hard disk which is interleaving between different process

requests. One difficulty is that all conflict for a device need to be resolved and pre-

determined policies to determine which request is made first.

c) Virtual devices : These devices are combination of dedicated and shared

devices. Its Combination of dedicated devices that have been transformed into

shared devices. The device like printer is a dedicated device but when used

spooling technique is used then it can transferred into shared device.

2. Spooling: The Spooling (Simultaneous peripheral output online) is a

process in which data is temporarily held to be used and executed by a temporary

buffer on the system. Data is sent to and stored in the memory or other volatile

memory until the program or computer requests it for execution. Spooling” is the

computing term for a method of copying data from one device to another when the

speed of one device is considerably greater than another.

A common usage is “print spooling”. A program sending data to a printer is usually

capable of sending that data far faster than the printer can actually print it out. Thus,

instead of requiring the program that needs something printed to wait for the printer

to finish printing it, the print data is “spooled”: it is sent to a program whose job it is

to interact with the printer. The spooling program confirms to the original program

that it has received the data and queued it to print. If something happens so that the

printing can’t be completed, it is now the job of the print spooler to notify someone,

and to make sure the job is not deleted until it has successfully printed.

3. Device allocation:

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

