CPU Scheduling Algorithm

* CPU Scheduling deals with the problem of deciding which of the
processes in the ready queue is to be allocated first to the CPU.
There are four types of CPU scheduling that exist.

FCFS Scheduling SJF Scheduling
Priority Eoﬁn(f Iiobin
| Scheduling cheduling

* These algorithms are either non-pre-emptive or pre-emptive.
Non-pre-emptive algorithms are designed so that once a process
enters the running state, it cannot be pre-empted until it
completes its allotted time, whereas the pre-emptive scheduling
is based on priority where a scheduler may pre-empt a low
priority running process anytime when a high priority process
enters into a ready state.

First Come, First Served Scheduling (FCFS)

Algorithm
This is the simplest CPU scheduling algorithm. In this scheme, the

process which requests the CPU first, that is allocated to the CPU
first.

The implementation of the FCFS algorithm is easily managed with
a FIFO queue.

When a process enters the ready queue its PCB is linked onto the
rear of the queue.

The average waiting time under FCFS policy is quiet long.

FCFS Scheduling Algorithm

e Consider the following example:

* Let four processors having their CPU execution time as mentioned
in the table coming into the ready queue. Now find the average
waiting time and average turn around time of the processes if
they enter into the queue in P1JP2JP3[]P4 order.

Solution: CPU Time

If the process arrived in the order " >
P1, P2, P3, P4 then according to the FCFS zz i
the Gantt chart will be: P4 4

P | P2 | P3| P
0 3 8 10 14

FCFS Scheduling Algorithm

The waiting time for process

P1=0,P2=3,P3=8,P4=10

then the turnaround time for process
P1=0+3=3,P2=3+5=8,P3=8+2=10,P4=10+4 =14,
Then average waiting time=(0+3 + 8+ 10)/4 =21/4 =5.25
Average turnaround time = (3 + 8 + 10 + 14)/4 = 35/4 = 8.75

The FCFS algorithm is non preemptive means once the CPU has been
allocated to a process then the process keeps the CPU until the
release the CPU either by terminating or requesting 1/0O.

Process Arrival Time Execution Time Service Time

PO 0 5 0
P1 1 3 5
P2 2 8 8
P3 3 6 16

Example 2: The waiting time will be shown in the Gantt’s chart as
below

Wait time of each process is as follows —

Process Wait Time : Service Time - Arrival Time
PO 0-0=0
P1 5-1=4
P2 8-2=6
P3 16-3=13

Average Wait Time:(0+4+6+13)/4 =5.75

Shortest Job First(SJF) Scheduling Algorithm

* This algorithm associates with each process if the CPU is
available. This scheduling is also known as shortest next CPU
burst, because the scheduling is done by examining the length
of the next CPU burst of the process rather than its total
length

* This is a non pre-emptive / pre-emptive scheduling algorithm.
e Best approach to minimize waiting time.

* Easy to implement in Batch systems where required CPU time
is known in advance.

* Impossible to implement in interactive systems where
required CPU time is not known.

* The processer should know in advance how much time a
process will take.

SJF Scheduling Algorithm

Example 1: Find the average waiting time & average turn around

time.
CPU time

Process
P; 3
P, 5
P; e
P, 4
Solution:

According to the SJF the Gantt chart will be

P, | P, | P, | P,

0 2 5 9 14

SJF Scheduling Algorithm

* The waiting time for process P3=0,P1=2,P2=5,P4=9

 The turnaround time for processP3=0+2=2,P1=2+3=35,
P2=5+4=9,P4=9+5=14.

* Then average waitingtime=(0+2+5+9)/4=16/4=4
e Average turnaround time=(2+5+9+14)/4=30/4=7.5

e The SJF algorithm may be either preemptive or non
preemptive algorithm.

SJF Scheduling Algorithm

* The preemptive SJF is also known as shortest remaining time
first.

Example 2:consider the following processes having CPU burst

time are arriving into the ready queue as shown in the table.
Find the average waiting time.

Process Arrival Time CPU time
P, 0 8
P, 1 +
P, 2 9
P; 3 5

In this case the Gantt chart will be

Pl P) P4 Pl P

0 | 10 17 26

N

The waiting time for process

P1=10-1=9
P2=1-1=0
P3=17-2=15
PA=5-3=2

The average waiting time=(9+0+ 15+ 2)/4=26/4=6.5
Example: 3 Find Average waiting time.

Given: Table of processes, and their Arrival time, Execution time

Process Arrival Time Execution Time Service Time
PO 0 5 0
P1 1 3 5
P2 2 8 14

P3 3 6 8

Waiting time of each process is as follows -

Process Waiting Time
PO 0-0=0
P1 5-1=4
P2 14-2=12
P3 8-3=5

Average Wait Time: (0+4 +12+5)/4=21/4=5..25

Priority Scheduling Algorithm

In this scheduling a priority is associated with each process
and the CPU is allocated to the process with the highest
priority.

Equal priority processes are scheduled in FCFS manner.

Priority scheduling is a non-preemptive algorithm and one of
the most common scheduling algorithms in batch systems.

Each process is assighed a priority. Process with highest
priority is to be executed first and so on.

Processes with same priority are executed on first come first
served basis.

Priority can be decided based on memory requirements, time
requirements or any other resource requirement.

Examples:

* Find the waiting time of each process and average waiting
time.(Least arrival time is highest priority).

P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2

Sol:
According to the priority scheduling the Gantt chart will be

P, | P. | P, | P, | P,

0 1 6 16 18 19

The waiting time for process

P1=6

P2=0

P3=16

P4 =18

P4=1

The average waiting time
=(0+1+6+16+18)/5=41/5=8.2

Examples:

* Draw the Gantt chart and find the waiting time of each process
and average waiting time

1(Lowest)
P1 3 1 2
P2 8 2 1
P3 6 3 3(highest)

Sol:
According to the priority scheduling the Gantt chart will be

The waiting time for process

PO =10-0-1=9

P1=9-1-2=6

P2 =14-2-0=12

P3 =3-3-0=0

The average waiting time
=(9+6+12+0)/4=27/4=6.75

Round Rabin Scheduling Algorithm

This type of algorithm is designed only for the time sharing
system. It is similar to FCFS scheduling with preemption condition
to switch between processes.

A small unit of time called quantum time or time slice is used to
switch between the processes.

Context switching is used to save states of pre-empted processes.

Once a process is executed for a given time period, it is
pre-empted and other process executes for a given time period.

The average waiting time under the round robin policy is quiet
long.

Example:

Draw the Gantt chart and find the waiting time of each process and

also the average waiting time(Tme Slice=1 Milli Sec.).

" process | ceutime

Sol: The Gantt chart is given below

P1
P2
P3
P4

3

5
2
4

P,

P,

o

W

The waiting time for process

P1=0+(4-1)+(8-5)=0+3+3=6
P2=1+(5-2)+(9-6)+(11-10)+ (13-12)=1+3+3+1+1=9
P3=2+(6-3)=2+3=5
PA=3+(7-4)+(10-8)+(12-11)=3+3+2+1=9

The average waiting time=(6 +9+ 5+ 9)/4 =29/4=7.25

Example:

Draw the Gantt chart and find the waiting time of each process and
also the average waiting time(Tme Slice=3 Milli Sec.).

CPU time Arrival
Time

PO 5 0
P1 3 1
P2 8 2
P3 6 3

Sol: The Gantt chart is given below

0 3 5] 3 12 14 17 2L 22

The waiting time for process

PO=(0-0)+(12-3)=9

P1=(3-1)=2

P2=(6-2)+(14-9)+(20-17)=12
P3=(9-3)+(17-12)=11

The average waiting time=(9+ 2+ 12 + 11)/4 =34/4= 8.5

S N

L ECY URE NOTE on

- torcebl Of Geps Lotk

a. Sydem nosle/.

. Dead otk _Feteltiory

Yy - Resobirc Aljvtalior) é)f,,,é,,(,gj .

S— MaethpdAs "5}(f)»Q.LC;LEQ (K hewn 4 /x‘ﬂj. _

L- Relovivy £ Paevinton _
’f” }590?{2’12; A/ﬁw a.nc7) ggéi7 A—)i’m

Deasdl Locy |
A cé‘md,&;c/(Fa o Scteation Oheve ears
procers b o gfa“o.cufé (a4 o H g Loy @.LL20uvrCeq
(SLich ca /‘f%u@/ fc& OnOEL 27 /m;f_'a{e&fs,f—') ke
£ ame ?mﬁ)uf/b' |
5. Lov Ewemple. P PP e boom /é,ymwb
Lef P fo, 1 T~ /3 o
£ & f}@"ﬁw/ﬁ (? Gnel Eleqy OVE Cc”’?/éfﬁhj/
ji);_gn; TS WD A ,.Bf =
TL&*) Z’Z{ Q“I[-hfl [d;[“)

@?5
6 ¥ 56 e

5') éi,;x Cr f&d{‘f-!ﬂ')
/—e/\/ b /7

.J(:ii‘!-é{'
_aé; “\ 4"‘< -£ ;

Rouling boar A Wlile A

O of):j ra woiking Lo ¢ Olta 3 /[;e/y

A% '3 and /::? '" k[Oar'J—f‘nj foar B. I
2.

CLé c;/uah&") £ le /AWW%@U we £

= e acd 49 K _ S/r?

palkir-. ¢

peessory LondElLon
o, £yTEm £A 0 Senrc/lock Of Gol)owen Lo
/&9}7 gc‘mlﬁifam,gdwf J’
ffobuLu.a,} 2’7»' [/-a,&;‘a.)&:f_ A b
must be helef €0 a 7

2 -9 and. BOFE 1 p paeirad
Lo Joli' A at least O0NL e o C€ Gﬁ”ﬁ’

. Slree
N ,>/lfn.
G/:Z&j’é,exh% b 57/ /’377 /wﬁ) (L85
A TeSOLTLL Con PR

4 ;77?:/

leaclt ON=xX o80T €C

pA-ChovabklX pod%.

LA Ceb\fr-ﬂr-f’ﬂ}t {)

&_Q}?O«ffl‘/ffkdﬂ al raRO VYL
%, Fh2T i - 2

L, Liatulor W ot
LD P HE A or @ retouvrie il L5 ém‘hﬁ,
,/K,e/ej Ag oy fj\,o?r /‘g ro (L3L B by fv)
Lirvrr €5 Skl Loer the- Lors t /o T o tess
to =R [ease

Lle ra:.é,-s ouri<

Hond [ir] Deadf L7EK) -
’:D*ﬁ-wa' folk_ (Con be Aonel/e éOxL
[- ‘ﬁ_fnﬁq-z"ng | |
Q- Doad ot boaeventtdn

2 - D,@c e Lot K A vo ‘ﬁ“’/ﬂ" Cp,
oo 1yend Aoek ol 14eFOD (Bne 3 Loviny

T

3 [a{f{zf’f{ff’jlf 39 tLiA Ofpvoars tle Sy S5H27
:)r‘// plseeme Flhet €L G}'r&ﬁ_c/,fﬂa,(X, 'Y),EV{"V'
perwe. I3 tow The Ofoivarin Syghem 0 &1)

¢l C?/eaﬂfeﬂd% rzf‘/f Ol ve . gofAd Bl

bt £ Ot Kok F ot Ay o ead Lt

pel e LIFA §ma)) neo. of /owoge&szL (’_}qnad-ﬂlaﬂ}’

Qi) the Zéfraff&gg,g Eay .;,,) the C,je_@f.yu<

o §7$f£-"”} wrll not /D"Tﬂé.f,{r‘_q’ Eanr b hsar
s e B

4‘3 nore

onelf
Y pat mMomaent Just aextor! fia

Q> -De.mef_'l_ﬂf-& Qf‘é’ fectel”) __Clnfj’ /?;?.[pv,{;rfy Vo
o 9"7 Lt a;fb/orraaél,) a}fw/{’ﬁﬁ)f\ e Olloked
e : &7(& el R

| e > f’ﬂ
to orcave. Then th2 : ""‘”f”"?' e
Cipte, tO FEIELE tior O IAerd £00K Lo

6 etwves] hff pihd 2 j'l Recouvie flIOLatdn jjw'b{‘
ﬂ,f’,,c{;g?fr=zz%n7“ TEHR ONLF oletectes, £ fjéw&.Lf‘;@f
Syi#ﬁ,ﬂj oy s 5078 R-e ,c.laq/.x’nf%_ /’)'rm/rq'w[; o\
rpmEvE tho e Fe [}'ﬁ_c.:/ c,;;’f:c—ta/. LK
Lespvv e - /‘c’/{ 05.&%3 i3 G/maﬁﬁa%’ . HAave
#f;",é;ﬁufv;:;e (o bed el Aov Aok Q) Krow f-uf(?_ﬁ
abpilt LThiti yLiotrets VL Qlocared ggp t0 O
g{ﬁ LROM , ,{?;7 A LLpy W«,,i_ Ly -
V) f?[fb",c.,_(’ﬂii’:r'z,% cl Plots R

+L ¢

7, L? we Sfed
st i b fr? \ |)
b K AOWN B2 ML O Livee —AJOCEED 4/
(’T T ' { L 5’/3 fo ur\o/ @ (‘fﬂﬁec?/
<.7_ 2 {Ek'[) @ gr @ - . .
z’o ath Ll Protesss s

v e
detect—7 P will ke N
crosed Pafh @) o ead Loug

g‘f‘) {Laﬁ ..

tL#

H17

R

—

6/2((;Qﬂgoufvcu @ '3”‘@710'1',9ﬁpnj.-o_7 g D
frootessts Bre weforpiend. o o O
q,eﬁz,ufe% i raﬂ,@}gfrgsyn{&q L
Lovowy pororess 4o onesoum o
Alloc atéon ¢4 @efoae.;*qu ézp 0 =
Lrot) Ferouvce 40 pyocexs,

A

[—-&Zﬂ ’4 g C OV £ = e Sov 4L Cn ¢:/ |
b o, b o Poave U actsomtes fr Ol AR
The Grefh & of th a)/ocaiden #ot Lome Fm

£ o 1
A b
B O 5
S——[Bk"
Heve @ (losed batn OCLwE WO ‘L’Q“?/’“’f-@'ﬂw.
o Df o c:})‘_sz,,f—dr',@cn ¢

oo LoLK 4 ol e feltesf

) O j
7?@_[1_0 vQ*’Y‘)" Lo onee K u.&c‘h? ore Of the

0 orracted /Dg
V) 21 A0S

,E{ O p~ ¢

boljow 7]

{/

- ‘ e Toameha
,() }),-)-‘-,;; o8 . /R

/gn,pg ¢ ¢ 38K ED

be aboTled,

x @EProalR
{f‘ﬂf) :" 3 r) CLJ’S / /’

Vol e £ of b
one 0 oL
cf-e acf oK mA

Tle 04 Wi/
' the Send Ao
b [ot all Fhe

/nfra{e-gaf,,

}Qg,ui Fhi'a
[nvolved
Lyl £ CINE C.USH;,

portially oo teases 9OFR MA y be

—

pnother OPPTOALL & tle of covlg ChIDES
10 CQbort One /Ofra'é-ea,_r, GF a Limie was LY T

é;/&gp__dzet?f/\ L L s ‘?)V{cf’.
Ly RKRe Spbrie fofa’f&m/eh‘ﬂq . Hewe
C’E}/t?(ﬂxf«v-cf Fo VOT 1 pedA /‘nro (.eAKLA nr)a? be

uclessively presmpied Qno alolated.
Lo Olhsy O porotess winte) tLe o erel oL
A /C)"B“OCLKPQ-
3) Dead Bk, Parsvan 07)-

Thes a}”kfrﬁﬂrc,z; WorKka A /b@"»?'r‘?ﬂftf"‘oﬁ,

o nrk B‘f é‘;O}/[)M;‘f\g/ Lo v COonAFOD é‘(’)"’[}”)

oCl E/\ﬁ"’)"fﬂf '

E/ Maifiia) dmeluiion

59 Xﬁ/# WF/ C\)[’ifﬁ &

iy No foareem/ oo

L'/l? Ceaculaey L) ik

t) M) A4 Facad Iy rlerncon -)mey,e vA D h‘y

M a4 6) gﬂz(‘)&&fﬂf) mLhn s N0 /3‘3"06.-054

Q»l;pam(‘&l.

WE) Abve Raclyseve Orllesz £0Q EE 2T
Pt (bes D s cmppisibkle bilause '
Cpm 2 YRIOIM LR ove N OA- /oque L) ptr .57
nol -Shevehbl)e C
Li> Ao /Dﬁ';k’pﬁ’)/a/'i‘ﬁf)) e /O(?r,?wn-}-r‘f\; {bra
C__ﬁndjl/"’ka’) A alAso foiééﬁ/{-['/ff 6’3'" f‘k"”?‘_/g’ﬂ.f_(;'é’

Qince Lpme FLIDUT (4y VR NOF Sharéds.’

Aike poinfsiv. FE tie ¢fs Govebyl/y
boreamptas Cha PToLtss heloling
A NOA- _/f”'-?',;(',ffmh/--r'/h? “rRLOY (o &A,{,,)

o ajl'¥

J—

be Ao -paeembAr oesommie 4o) o)) - O
ane) Avst ay porticey pooreaseqg FTE.

/ZWOf 2 L\)ar‘f V' Thea Conolifilon Len /o<
/'f,emzzweaj a“p&_a;—;‘hd Ql)) tLe resSobTLLL

(228 deques t bo7 to// £
a“g’;v‘mf*’ . BUF parcliciing bhe crespouoea
TEpLestag by a pavies e ¢ R
bt /bq'f’t’//] O/:gg,(‘a/f anof & C?//-’){'a'ﬂ-e__@/
t.L”?r_) the reloorces Qe {,_rf-r“&_zgf c@%},@'ﬁ
A Eééf"(fﬁoﬂ‘y'

ARO tLon Ofbrpach 4 tlhal

| /orﬂ?{-efs/s Can drgULyt TELOUTLL &7y
Whery el Aas nNort. €L hgbore ’W?“f.ﬁﬁz
ct o must ow)ense g |

r)of rALfotT (L5,
be Lthe Lt 1oL

tAhe

{;vf'r FLLOUT (LA,

Gl Cumrmen F

ThiA Opproachk maﬁ

bl ient Cinte QUOLAFag TRECUTL My
| Ano fhen,

be iﬂhuguy Lor & /?fmj Lime 5

ol éé(ffﬁl}b/ £4 the /oﬁof4f§££a "D’lec/l&{feghfj
Lo popular res otiTles MuSE (oprk 67

(t ,@9/\/7’ Fme (Slaty, ¢4 KNoopIn oA

¢ faxrva FUD

Ve e
&[0{/‘ ,ﬁ,cnfc- !‘-,:: Clhr# ?’)__

@ Q;&_ﬁj“{‘é&'mﬁ‘f: Eﬁt—’ﬁl_ - /Z,C}/t’rfh on € n;%gn££
ﬂ hel 3’3’”}/’&%

o S ’?r ? 2} u,eyf é‘DY LKA -
,l/x ; \ Q C}/?Llh@' A Bﬁ'}f:d»‘f“ﬂ)

)(' fLJq/ f Chod) of
pY X Lejp oyt tALHmo OF

lo/ !7 @ REI{,?}/;J A C'U\«cj)% ’b’,ﬁb’)@t’_d wy,

eV (v rcdilay L\Da,r-".r‘ :f- ojr) LISk a—}b}afracl& . ﬁ/l
I SrSalde i TreSobs P pving Cireonl bad

_g.f[__)'-r‘gn_ﬁ Qmof VeLrn o) /K.l\"\'uwg,{\] 40 SARLI°TYnALAg
O~ poriral O:Jfro}’ew;g) vl respugets. D€

f)LD Obvious ,ﬂ",e“’kmf‘c,,t\j PEFH Rarsds, ovin m%
Lhe mempr Gd a9 vor 4 0} VegouTe ea @ys Lo A,e’,rw)
Hﬁﬂﬁ 0 ‘oftboarmine o) porin

Are raﬂ,gc[,u,ﬁ_gfrﬂé__?/ c‘r>
L e Rrhimgyrattfidn

ar\cf VALY UYL .
L A mﬁewszj, Orol v é’fj

Ex - Eatt oresporie o Oovtouny Oiimb v
AdAp crated (itn L.
LA B ¢ D ook Y s
/ﬁiﬁ_w‘ﬂ? N 4em I bve

A=
E — o
£ 29
> W R
Then o] 7, be a PTOtvs Ludivg g e,

it Con TG eyt EVY ’fr L, b (e “‘”W‘J._ r/.r/“zq,)
pat af P A Ao)die (1) than o
(or."B. Lr.‘ﬁ“,e--?u,—ax)/f bor Iy[12) omly no ¢

éﬂf’)”‘f A [Lf), 3[2-). 65{ /90 LA fb”f{i%i!-{?’}fé‘ﬂ/&,
Loy A (4) then [0 must aeleate a1) Mg

- ~)’)W I.(‘}",.E,[E_.F’-VV EL’P q
HARD UT LR /thf”ﬁ PEAE j

ALY

Wy

to/o) ~NO 00
A the Kn&m_}fe-q"j,ek?;i,\awu/ﬂwe 750 vy o

A tp ot~ Opet s, Maximue m Fanp vvtes Ll o,
/mro{{*é{x Con g wesd, the total No-mbn &f
@n0WI Q] Dlatec) fp Kuach [fprolUS Gnel Alip

U} Derd o LK Avoiclance ' Huwe Ele op W’Zf G stem

f’aie.ma-ff;/i Vecovsm may Nerg Pouny & by 4

/D rO (P! t"fr) Lag L vp ; C/@ Ay i fke'd" K
Knowledqge Ll of L Con agoprate.on ;
femottr QAllppt O G VY LG Tyl oy ;

éW ﬁj /arrc) (245 (0 OVorel o Lacf =3
7}‘_{? @-}omra?‘—r“ﬁ QY_IZ-F-)Z”’) O}Mﬂ*ﬁ i~

LN ﬁ.t _Qa b2 . fa/f‘-fe 5
The Ly stemy maocntorha Lo vet)ors, i
L\)Uq"l\ CAnPf f_‘,“né’.i_ D Lpte /,eng,{-,g ove. ;
m auxaj' fx,&%.e.afﬁw Ly,

(S ave w{?n”&f_‘& the M ve(for 671
) Lem b v ﬁj A vor|abTe K TN CFONL X ﬁ/ et

HALO Y @ {?g/f»f‘_ @-ht# |
Finest, F§ tFR verto™ Slicin Con farne,

r)ov_mgw 03[AR D VAN ﬁ,t(_;f b i LA /@Q“ﬁ[-e,g,e,)‘
J) Jorne £ hyvvegs |

Ot Awvpidance (an bE = 44 b
D,g;,ajkuw\ Ay Z | . r

/gﬁ\f)){,w’é ﬁ)ﬁ,r/a*;"éi%rv)_

Poon K v s /Br)f},cwz_‘z‘)-,n_q |

o wWovK ond Fénish by @w two |
(‘rf Ci2R M and r, respelicv ly

p—— T
T T Ty

V' (407 A \ \
In,{‘}—;&/ﬁ;'z’e éL,{? wﬁ}t’a"& wi fj.\ Qrv?a[)a[)he
ALEONY LA one Fer cSE () 4 balst ﬁv\.
L = | £0 1)

b

—

:‘7 Find oan (Stk (lat both
9 Errien[<]) = folle.
5) Alaeel ; & Wor R

(Z}j D0 tulh 4 Rt tLen g,ofﬁ._g%ﬂ%’ C/

37 WoOrK = DUTNK 4 All2La o0
Finigh[¢] =Taoeee .
fC?fC} r:).df/p

(7?? #Lnt%&t = Taris. Lor all « £l e ,,) |

Lhe Sy stem rd £ Sabe SHAFK.

Ex)-
—

Lef e Loye £ /Dfrau,{u/% }'g to /Lf a"ﬁf
L{ YL O U VLR A’B ¢, D. TLe /563"0&&&,@

B Con ogat Loa asona @ b b

WW /;D"'?i"()ﬁeégfﬂﬁ /16‘50(7_? ‘ _
7% = M AY ey N (em o v 5} VoL
e achk) Ll ¢ o ”/e? LAtk T s

1317

TTTTT

e

Af Any Momen{ ¢ Le ”)W/s.-w&j,em,ry&wwm

GIOCHHT 10 opeh [fpaoctia Con be aapatsit
o
o Aot
= Aleocate 09
- ' ek
And pre AvaliebiR Yk oo 04
n . | - .
ent Cnn 5% G i 2
Mo m-)
¢ D
/jpi 5 [- Avacdlabie

47 (o) cwlote tHE Matarix Naxef
Ly Ltem Fn Lalbe sferfe.

S L6) pearplvaa WL TSRS (0,332} :
‘f;‘ . ¢ ! y 4
.{ / CM . L\} }j‘_(; (7(3”5’1/‘{‘—'3"(7" Ltmmi Q{Jﬂj‘@-/\y‘ S
AnS . z

0/,

o >
g:#/)mof»e&d-m - e I'D Y

£
e R b A, B, L0

M) = 4 TLROBT LU =
Avm\/@[z’/fzwj . MLPE B L/
A llocatitn (nxm] =S¥ = 2o &ize
MAay LOxm]) = SxYy = 2p &z,
e Naad [xm] =Sxy = 2esh
= Moy — Alforarv Y7

C:;f”& TSN O W LA N R f;d{,wﬁe:j_
TNCd
ook Fioeh
A, \ "'.*O = | | | — -
-
% e¥b =25 e i
- Sunil
c 24l - K
p 61k ° i L[—-(f
fov Ll @;ﬂﬁf‘“"{ 'f R S nttmg

£ 0
TR (0,700 g B Sodingy
. @W%Febchl " d/

| S S
Zj - Vpces OF BNEZC &n £
IS ¢ NS |
a Ccff)‘} e r()‘?{,L&J?

@) AR5 F -

ot L O R (onedh
il o —T
A l_ | — F
B~ .

¢ =3 2, =+ f

D i ' 1517

fg%’é. ‘ O/E,Qr::? CA (I,D) O, 2~) Cence WX Jy O\ v &
| 2 R Te S 0uv €A 'E} A2 D we ov q_c‘\ tokle SO
g uLxt o RPN %wmm_q. A B v % PaLite o0

— ~ fp—’r\é L SOWW GV £ f“(}&.j.@_}da&b.
b3 0 K CEQE% :
_ 6T ;
A— | +R=82 1 I“
R~S132% '
c—3y1S =¥ T
n-2ty B S
y— ¢
v)o
Fov Py

o] 1) L L df (0 0, b, J O) _é rh £ & STARRY S NeO. (7
' L ' s s a1,
2, sfont > c"} A 4D CFé (b”a,?,(,f.ﬁ;:)fi LA 34’3’

A bter Raer Foly & 's 80 o cis ove TR|emLd

¢
D — L1898 ’ _F

o7 /()7 3
;”[' ﬂf’(’f/’s(a/ é,{f).ZJ STt Con be made
éf‘f.’{,@ M R v @ K;DIIL;’/)’(SJ Lo oy [> 5!
Abbav 2Aeeunt?, bhe XR8P vEs Ve fl.)’;-C},ecq,H‘

W) D K Fraish
L2402 Ol
o g0 =ty I r

[- TER :\;) 2. i
B+l = 3=
7 Y=173 [T

17

NUIR ks P;

of F nak (0F,£0) Wity (on bemady
Srh(R we havk (2, [G,t2, f)_) FLEOUN L LA

ok Fenilt,
A=At T =3 p—TF -

— } = — T - ~ .
B-lyyo =1y | [AH Chist,; f‘é'[waej
 ~tl ey g —~T -
,DF‘L‘}D =2 3 F—T

=T
Lo +tle _LM?W Cx Djﬁ Rexptafdby &
<j>0 P.l)'_%r Py‘ fi) Eél E’) _Lﬁ&ﬂ _g‘[&.}f’?‘

13/

DEVICE MANAGEMENT

1. Techniques for Device Management

2.

3.

a. Dedicated
b. Shared
c. Virtual

Device allocation

a. considerations 1/O traffic control & I/O Schedule
b. 1/0 Device handlers.

SPOOLING.

1. Device management: Device management is responsible for managing all the hardware devices of the computer

system. It includes the management of the storage device as well as the management of all the input and

output devices of the computer system. It does the following activities for device management —

Keeps tracks of all devices. Program responsible for this task is known as the I/O controller.
Decides which process gets the device when and for how much time.
Allocates the device in the efficient way.

De-allocates devices.

There are three basic techniques for implementing a device for policy.

a)

3.

Dedicated devices: These are devices that are assigned to one process at a time and the process only
releases the device once it is completed. This includes devices like plotters and tape drives. The
problem with this is that one user is using at a time and it might be inefficient if the device is not being
used 100% of time that it is being locked by the user.

Shared devices: these are devices that can be shared by many processes. This includes devices like hard
disk which is interleaving between different process requests. One difficulty is that all conflict for a
device need to be resolved and pre-determined policies to determine which request is made first.

Virtual devices : These devices are combination of dedicated and shared devices. Its Combination of
dedicated devices that have been transformed into shared devices. The device like printer is a dedicated
device but when used spooling technique is used then it can transferred into shared device.

Spooling: The Spooling (Simultaneous peripheral output online) is a process in which data is
temporarily held to be used and executed by a temporary buffer on the system. Data is sent to and stored
in the memory or other volatile memory until the program or computer requests it for execution.
Spooling” is the computing term for a method of copying data from one device to another when the
speed of one device is considerably greater than another.

A common usage is “print spooling”. A program sending data to a printer is usually capable of sending
that data far faster than the printer can actually print it out. Thus, instead of requiring the program that
needs something printed to wait for the printer to finish printing it, the print data is “spooled™: it is sent
to a program whose job it is to interact with the printer. The spooling program confirms to the original
program that it has received the data and queued it to print. If something happens so that the printing
can’t be completed, it is now the job of the print spooler to notify someone, and to make sure the job is
not deleted until it has successfully printed.

Device allocation:

g T /o Syates . T
::;:E G r"'»f‘-f"""—"’"_"""_mﬁ

“Tae reain j0bs 9O compuler axe T/O
b{),g,m}rhnn el Pstmcﬁgs,iﬁ% . Thao O GE“ O-5 _
<O (_‘_‘Dm[)u\-f_fr. T /o -zt lo O NeLcpe and conbrel l
T/o opemcobronys and Tlo Lovicen: “Ting . Clrro
Lppercant by pes oy T/o Adovices with Haedrc
funck onals }d and gpecd 45 Q0 Unr‘r_ieiféj s ﬂﬁﬂﬁﬂbl
ace neded Yo conbrol Heom . :

T/lo pHostdloorce % —

Mf‘_m___.m_m.“*—-_fq“

A \fclfu‘-e.}-‘ﬂ o T/o clovices da¥ can be
ied Zoith a compulet , bt Ahe badic handuwa — |
rco elomonke - Emolve —<n L/o ace buses ,
Aevice Conbrellerc orel e HLovices .

I}.LLEQ& Qrto. | beecl ko :gj.-.f-é "{ﬁ :r_"‘r:'n c:_ampu]e;z_
‘orcchateckaro - OF cannec ke ke preocesscrc—
emorty Lhpeydlen to [ta oy frclavices

and atso "él:_"ﬁnfwﬁc‘,{—"_e T 2o cﬁg:u-_?teﬂ ‘2uc h aa

kied T e Corci ol "owekb—fti<altel Porche .

A douice Coalrollec T< a Colleckon

ofp <electronice Yod Con OPEreocbe & PoTh o

bm_g'cfsndcac:u,utc-__,i

: { A -,a_g.aﬂ-ffe CommuniCales eoith
o compulert Cgglenmn by EEnd_i.na. _s:;ﬁm—h ‘l*ﬂuﬁl,
a cakle - "The avic® Communy cobed v S S V|
machine Wwwough @ connecidon poink ok 25 o
cenial porxt - Sp O oOT Wote Aovices JYle q
Cormmmen Ce) op ASirme9 . Wen e Conmnackdn =i

coted a bl - TR

TThe Prtocescor Communindet
fotn o device Conbrrolle by rCQr::cih\da,d

_%@na beh Paticxn” €0 dhe reegickee op 5, 3

“An T/o Port comtists-oh 4 req s by
53 L '

'I>' Slabuy o ?«r‘sh’rr a

&Y. condra) Te gislen -

bls o A BRI, Con o, ce s
%] Pcra;}_-;"];i&’r_,l _ per.qsc,mx,a

Vesing eperiation | P iy

‘Q'.)M‘P{W A Lv‘-}ua\uﬂ :

—_— W
3#1";},&; Y o d-% F LiLﬂ’! LW on,

1) Sloda~ “‘Jt"«k(
» ‘P!fgkf Lo C""l’)ﬂ]‘t‘kp—- y

2% o ‘-’7@ = km[)a"ra—n
Chix bm‘m] TG e d ‘J'“‘F’]

Tﬁ P m‘i??. flae SROXNE, T8 S Fered © by i lrfrter o,
A A -'-r:?_;]f‘rw. el ;f BT A I/P c:v‘ulM'i‘ Ce. oy Cj 1-“-}
L-""—ti—'v""‘@. tFvd Remt bs am b‘/P Lo .

s T F-u-:--f‘\'l" Etf"hﬂ'la,w]' |

—

> mqﬂc"-:}l -b—;_,#-ef{ ({N’ P'ﬂb‘ﬂh_urr Com LA”‘V}M) POkl

By Ty, pobioy 3 2 ckepf ief exemph
"—4_ 'q*}mih“r‘ﬂ‘ﬂtm kvaﬂc,ﬁ\mmrz&h ;,’B“a’l)'k([m,:}{-.a}
provny depemvey el e £
Sl ot ""f‘?’)%%?d —
;v-'H—n/ U\;{ﬁ 477-& cyMM'r i
ol e, TR W
5 ere | wFJz’; j--:_*c& mt‘,uumf s
)« Ad O B Hore, N cendum ex 4
Cam BT g KT Ak (Fe 'ﬂ‘-mo‘v?rxi: of s W
MW) e\e Fneu_ ot = hwy\q.. wprv'b’hm
i~ 15 ake dvme, ed” WS oy ducen vreon)
Ay 15 edd AT ents UR wvr ok b (b
'-ﬂ_ bz cen Aaexr Wond)9?,1,\, S m ol AaS
ypin LA DR CCTA
D¥e LN T » o o
ﬁ«-m. rwd S W?
efecp oc ngl&a;ab-’d- T s g)@c&,isiﬂ-
EUNL:?G. L tenpumex -rﬂ"\ch? (fm?w
'+ "‘t“"**;:— [K rrwckw M-Le
&hmw "%H«e We eVl
L m%ﬂMMLﬂ% -;.b__ n..’, 'P'BI;B‘K :

| IME b VS e {:rn])?\ﬁ. e et Ameg 1
Wk TGY‘QJ.N\U—H Tanhps, e olala cnls W bnefifes FF— !
A ﬁ'm‘ti7 v Lig fafuihv'f e Fonmpex . g
Al T Lo BEL ARl g f-7~| LPE . ey
L_H,?‘,*\:\T' Cq-nr\\. D-—\g\rm‘k?’ —— / I

l’,ﬁ;ws ‘;gdﬁ&mm;mkm,

'TT g“'H*’tT_ SNz @<
%Pfellb- €4t
¢
2 L@: f‘;—errh;-
shom lofda T todiatoel

) pep) . B ” o= 0 ;l- {W *_Uf;*
Pl s Eena
w<tite (dove) wlle (e
S & W (Lo ==0)}
7 T\‘rb-e!m.;_ A P oo e hrt;]l}{ m“)r
"""1_ !‘ﬂ\ ﬂt:ﬂ‘hv'uhnuﬁ 7 g J;M
r““lf[W“::’ 'aJﬂ*‘l?.i%) ; e tﬁ?“ﬁ*- B 2
A st : Gt o
by TN = q-:n*’{"?wd»uﬂ; pe =, b Vo
= d : : e e W)
e L et b2y | il o %7
’
3 §

—- ALk -%E_"Si/ﬂk’: ﬂJiw-
ROhon a preocess svaate to oo ctick T/o ,an
0:S codle << madce .o recy Je ket esiie Jra T
PT'{CKQSL << put ©h a block clak cvnol e T /o rcegue
TS Lot o e Aevice clxivertr « 3P ke clicsk (¢
iclle. . ke due cperta.l'—r‘c\ﬁ T C J_‘,}Md - Dh tee
Sl b”"“‘"a s¥ery @nothere roguest Tc acloled {o
Ao ?.L‘!‘E‘-_.t"{j
“Therte Oree No op click Qokedelineg exntgorcsthm
"?t(‘}\.hifgvr.\ arce avoulable , . o o d’ a
> FCFe CChocduling L, reat Come B il cercve B
"SSP cckeduwl m @horr[rfil Latk Trme 'F“rﬂ:&[‘)
@}“ Scon Q.C.Nc{:_alunaL
44\7 C-Scan 2 ChadV) a C.:_".rfcc,r_-_tn-t—.Qc&n.ﬂ:c}wc{ulin?
S- KOOk chwr{h“ha
2P Hee cLL.Sk e but('-l , Ao Re 30 bor click

S e S @
E"? Cc —~<ook C]\-Eciutrn% T M
l A O .JTT‘:,..
oy O. FeFs. * Ok cehacll quwyaw

F :

2 és} ST :erafiﬂﬂw:tf. wees § : o
:,)f" "/ ?'E‘T-l nc'.a:!_-—m: el anrevmenin S _“‘-:’E """h -

Gueve/ & o .
% IE -E‘.’T"{E_g_ﬁ?"!r‘3§ﬂ731;:5{“’3 3

“r--..l.

3mh'a~"*d head —¢ af QH[,hclIu"C Co .

e 36 %o (€o) ge PaMuo Iso (7o

T C TO=Ce) :
Beed F 30 20 5{3?50)
gde . pLaze) (:Z-DJ”

P TSR F
- B --“.
= ‘ ’

R0k Ao 4130t 1o + e + 86—+ 648) = SIF eylinden

=S Cq -628
5 V/
<5 dhe e Qvercacye kaocel
rmoveme nf -
Pive'fﬁ"}r* hood rrovement- Totked "D'Ebfa__!idﬂﬁ
Total Po. ofp hkaag
moveme nds

O a aiasr{j thee

St < Hwe _Qimp]f‘st Aick gchoclul
= e

bk < doesn' b prievicte bagleot Qercvice pore
Pcocess - On Hos cas® e hoad ofp the disk
TN € 'Drtom one .Qul;nc{err Po.g,t}'r'oﬂ. -{c AN H~LC T
Cﬁlil‘\iﬂ-r_ Postion to gemxfpocm *}h@_f]{a opfrrcu"rh")
o ke prcocesses ot e fcme op exocuetton .
TTRic atgorcs thas = versy @imple fo
<mplerent bolt dne perchere .m:wc: =5 ot otk pac—
-\ﬁ'ti be cawse fho average keacl Ffroverngnls Qe

P TYC
@_thrcks:t %Tim r-’d.’fs.lr _g:hpc&uii/h‘a’(\sfsjﬂil

T T VTN i ¥ P S S

He at

, T Sl -4“3‘

M
20

155

e A S b N [T 1
c ~
.._‘

6+ 6 + =+ 40 1.-&._,_1,:&__;_‘-_.-_3_;.._!_&”0
= A4p CYlinderes
Pvertage head movemont = TTotat no. op eylindes

Tejol 0. op kel
movesg aks . >

20 : gy
’___jg_ﬁ 20 ;’
Coumnd Aagrance E\r'r o T P rettoud ave hoadd
n o oorcdt Ancelt HL 0@ Fex ooncky
L @OoCwurty, o © M g:f(;_““m L vy |
gﬁ.u:w lreaad ¢ aploge - |
\—‘3_/.3{7 the irabal s beinees ame Corre [T
o Ctirureoatr leacl Poc™ | —Wew joe _E FCFC
'——-'-‘—____-._‘_-_._ - —
<a o\ ;ﬂa fo TGve L—ere{‘«.uﬂg aAanoit—<rc QH lvncdorr .

T ic olNsorcibhrn Gelock o troguest Adith poindmom
.Seck e preomn. e Ceutrwond hoaol pocibren . 14w
THh - s s Cmlbe , 1O colecudadc dtne. A bernc e preem 3
ore phonek lpss® fo Thu lelphk Ond roig kd a?i;nc.{cq—
Pb,s.ﬁ . v ot Alg tance ("-dlnnr{rc-(Lol be cefeoe
ket to rrove dhe head bhecOule niro mal cdus tance

hauing mminimal Lok ke -

Ct:srnpcurr}'n Ha qﬂﬁerci{hm Ani th

IPCF&_}{"r Fver o *émsprcavem:ut.:" f"’-""t{g‘ofcrm:me_ 2

?:735 oot SchecloTing =
S R e e (AR , |
9n dnis cages dhe ULk O i Shaicke at one €nd

of dhe disk and mmove loroare s 4he Other end. , Wkile

-r:“n 4o mean Hme oH rcegueslts Qrece .Qercvf'c,inav'

Bthosc,end ,dhe hirceckcon of react rmovemond T
: ::‘:t-nl-r’nucu.s.la

6t6+et FOtQo 4104 Mo+ a1 = A &

: > g =
oy ar'-Gaf;w
Y omraveyrents -

. — -

Soprs

arg 'y

;W&nnﬂci\cdiu\:ncd T5 bellert Pen FCFs buboor ¥

|

o —

Ynan $sF

'1-l‘> C = 8can ccheoedvling = -
R N v

Tilko moun drcaclo ack -cip gean Lcheduling << 4.,
totubeng e - Some rceguesks QuTe ;::.:quHna vn ol
Some rm%ufﬁ}s. arce Sertvicant -:‘:r‘nrmrﬁa'C‘.L_FflaT PO oy 1y
{)'_""G-f(‘ﬁmo Awss A racwsbac ik 25 Pn C_{rccutq't--g_{_‘_nn

Ef—hecl.a.“liha at.anrl.‘ihm - &k 7L Jdesignecl o Prrovicl 4
oo wunipotm Aol tome - O fu's al¥orcrthon , MOVe 4,
l"‘?ﬂd.ﬁ\fmm one end 0 Adhe Olhporc €nd o ke ctish;'
Sesiviain e reguant aleny dhe oAy . fohen dne
heoel rcoaches e OHorc end | <t immceliatel
r'!ie_!u-—cr\..i o Ahe betaa W oD e ocligk aAnthowtl gex -
VrcNogt C‘m{-} ReQ O ext On o reo Miaren $ts P
Wﬁ1mq_% N por:{tl..'ﬁ'f‘irr:cf Aarme fc'on _nﬂuemnﬂ_.,i <

X ek
L& s 2 G Lyt f:é G) .

- 86" Sty RO 150 170 1%0
e A

i

L AgoC Saepts ot ¢

€t 61 % +70 4+ 30
Tlo 1o+ a4 Yy = 160 Ca'lfho.hzt;

N |

- N -,

|l 6O — 80 hAvercocie hoael movement .
: ’ 1“(T - % : ! '
Sy ook ‘—W i @<eke ccanscheduling) i

. Sn case O CLcom omed c-scCan | ho Aigk o
TOVES Ocress e POV foickth oh dick . pos 2 n Cede
q., loolk gcm&ulin} 5 -{;ﬁqﬁ;?_a:ﬂ;m el onl Q8 Pt f

&.L—El- eeverntes de dircechon Cmmediabtly . coithe

'rr_s:.:ncmna Mee Bnd op dwe chisk . -

Hfﬂf-{
o) e -‘46@) 66 TR {0 o EEG Héo
v -_-T-___‘-—-.

= Tl

e —

(__-3.1_4::——'51- e a0

-

c+6 1+ 84 7% +20 + i3ctwtars T RES cylinclorcs

ﬂug_qc:'i"}{,
=BS5S "R R ‘\ho a rmoUvemont

S
Goth & rcff_“)

20w he thted

£y- C—xook Scheduling -
LB N e e P e h‘.M
3‘[— -?“.5. (o W \FC‘-T_C;D_“T\Q“ C"E‘ -('DC"k E_CMCEL‘ 1!"‘!8/ s "'-'(‘:

rceg et a-we Qoddcpied only dahken ¥ hoacl moves
oltboands af Zn C€— gcan - AJO reoguioest TE ccabie —|
l','\;'E‘-‘h‘ lokale e Jo el OV ES T n coarcche ofpterc
Arteemining Hed no rﬂawegt{ oured ;B~er_ﬂ_=,'b¢2\dem{
e couTrte point - - L -~

|

s 7 af P
EtEe ++F0 tgot s+ 14 _ (<o C4lindorcy

SO e e RE HecA mowenmeid -

- .

File ayskem s M rmocl)

e S

access ofp both data cnd pr

all Zo weexS fi:p
Cytterm coneicke ofp

).
Cn).

Ci]‘!) PCU'(_!T‘TC*T}, @L..rck artb_

- F-r.:h: cys tere omleda? T
- = G —rrTN O —

rshok << G‘\:]f g,-.f_g'[-cm?
parcks o pile gyelem—
—r Coleckon ob [iles.
—7 LOumeclory. Cpreue bote .
— pq!(}w"f;f*n
visible &.&Pecf: ob an

=} preoviclos the mechansem [pox < fomafye cmel
nﬁr{'anﬂ o the o.c Oxg

o Compuitr Ljf Ferm . —To E"'}G
c{tﬁ\bf"l'cﬂ nd pPacic . e —

A Colleckvn o pile ., €ach € Lﬁr"m'na rTo_tonfrof

Adaka .
A CL;rch‘-mr_a; Chruckuuce , 23kich oTganizes

and proviciey ‘Tﬂﬁ’ﬂﬂmq C!JQOLL}' all, H pules
-cn "R‘-E- _Q“fqll"f._ Gy - ,gr’ : .

A < r*f %o- .ﬁae.Pmrrch‘-(’
""ﬁtc}?cm ob

PGl calie e Im?«cou:-d [e

Asrcoclo cies - e
W e - 1 2 U : » 1& -. o i 1-'- 3
I\I-e 5 [I_ LS W

VA bﬂ]_{’ T “a CQ!I‘E’(‘P‘{"D‘E OP sce fodkedd T‘nﬁ)u'{‘m-—
abdon hatr TS rrecorceled én _?,ﬁft‘rrﬂﬂ'?‘g,
Clorage » TTherce axe d.sppenw r‘tfpe,i o b
onpotrafron Llortecl —n o hile -

—1 _eoUTCe pPrroQrrom . T :

= {}h_iec"l- prro&-r&m .

—7 @wacutoble o €%

— Alurmosc cin&_a :
- —Texk N g A

—1 Gaapkics Tmages
—» pQouncl Mc,p.r{_ci;h?, et -

A <o ol apecatcan oty A ﬂQCGfFf{Sg“»?am‘ﬁ
i Ao hﬂ{’_ Oncdd OQuultoma bicoddiy Qclvoan cesy -Atee F."'],_E gus_
b . _';um'lnrrhdj a. Lo be (‘}PG‘:rchFrnﬁ (‘Lf"f’""ﬂd& o
?‘\ o end Of e t‘ul«e‘ ced oclvances 4o ke €nd QE} o
3 Hie Ja g hqm‘tﬁ torel blen mateccial . Quch a fw e]
can hye stege¥ o Ao hpa.hﬁ,ﬂ anel o r)frcﬁf“l'ﬁm

= mnﬁ b(’ akie B, Qkip Dcfrrcrmof Are aokooand
- icle e C

.ﬁ-ca_ﬂ? Fln(é]hﬁ!’?(‘ tage .
QY- LQiceck Accecc prrethocls
\ArSiare. e brod” v I dircoctE Ctceedl O e bodve

decens . p pile € mace op of i et Iena#h logical reoc—
okl Ao}t adloas Prrbﬂ-‘rnm.i e rcead € Aorcakbe Tecorcds
Tapidly o pes paxticulac orcder . St 2¢ batedon
e dick madad op pile ,Qince Risks olouss aandem
crccess o o pile blsck - Fow KRsoet occess i
Pile < y,fm::rar:i as a numbeced Coguedce of
wloc ks orx rcocormdds - A ctirtech acggﬂ;&*p-'f auboxes
blockg +o ke rtoad o mru}?-en '71;&1 roe mq}
rTead Llock Nno- 1Yy Yo n HLeck Nno = & 3N Lecl Jhon
txcike 70 block no 3 —mv-cg. CGleto no rrotibric ks
on 4he Ardorv o™ rtqﬂxd_-ha e A}r{;l‘-—(ﬂ? por e lircoct
access hale .

%

KLicect access pilea arce op groad wse o
immediake access , poc lange Qmounts op T njpec mokion,

(3} CHM-’C Accens H_a)‘h:::c'l/ ;'}nd.@x Lircoclk Access
Fo Boct -y

2

Ofhore Qecese methodt Can be bwilt On e of |
Op HeeQ Aircecl eiccess me ool . TThege mothocly ‘Trvolveld
e ComabractHon op an Tndex o e Pile . e .l
Taded containg - porntecy o dne Vamiowl bloda-
TS pind o ﬂ:ﬁ::qm.d 2n e {ule, bl Sea-sch =

"E’fﬁi ot Jron M:e_-h Pontc—c "}ﬂ Meﬂaﬂj‘ﬂ‘ed’ﬂ
Y end Men pNind e -:!leairmd TCQ Corced . 1

o e e
o

i
_ ,-@m:-::{'rﬂ‘ra _GHHCHH‘QL g ‘ ‘

'-"‘ O e TN, P, g i, W
' Compurere Qyelems Clorod mitliong op P iley on
p e e neact fo

| J*M Aick ."Te manage ol Hele
Orcgapize Ahcw - TTha s gr—can << dong Tn & panks 7
"\(' <iek eaarcsa gplil} <nald oo OTE maorto m«_l—r}f‘wu_
gach dulk on a _th.gir{‘m {'ngnllf‘l_:n}‘. at least one
pardthion adkortr all ke [ilet ond durcockerties
arce rees (da . Somebtmes parch blonsa-ce used FO
Pxovicle Q@vc:nc-_ﬂ _Coptustale OQuToald lorining one
Aig k cad otk iroolked oS A Lepoircodt 8=
r'rc.tg.c Ao vice
Ry €ach pamtr koo conbaing “ngortm® aloud
E\t"e-\ isthain 2F - TThuife EnpoTm® Ts keph 3o a
A evice dirtec oy - “Toe ddevice dircec tocy ree — |
Corcol i npo-z m® Curh @) namd oh P_'“:/ Iocah‘aq‘
t:ﬁ;fi"{ S S Eao i ke P | -}Hpt op g-:.'-e_ on
MWat pevc e icen .

CToiasiry

¥t een

it o B, 5 T
IS ;G

L%

Eiles

ikon Contld@ocmg o Pantreutarc dieoitltory Qtrue —
[irdn. Gare opermo bRt e FsAites RicBECsfa s ifcuraol
on A d_,r’técf'ﬁ":'gv - - '€""\f F } ;
3 ") Cecitch ’Emrr oL [-n!e CJ) Qﬂ:QoJ-e a g\ ‘e .'
(fi1) Qetde apite ~ Gvo il o i reacthorcy
F Cv) Renhoee a B‘“"-’ - W) Trcavexie Ha E‘“ﬁﬂt?e}ern.

"

PIe o camechoy CPGelue s (Y

ETN A TN T |

@ S"—.qﬁ_gr-‘ | evel ,&irrcc}orr? 3
@ oo — level “_(}J._u{_-;c,,.r,d ;

@ “Jrecep @Trtﬂc!-ﬁ"c'a
@ Hf.ac'l‘.c @Jmec#om'—&+

@;%;:ﬂ:g - KLavel ,@iwm o

N N, L P . S g,

“This dlirtectory 7< ono op Hke Cimplext clirocf,
Shtuckurep - AN p;{; Grce Conbained 2 ke [awmg
duTecleoty , alich e €asy to support aad Undecsian,
VA Single ~ 1evel djrr:ocmn:d has g,ﬂnijan i dbadtons
LOhere> Fue no. op prles Vtncrcoater - Qince, ol ke
S\"ﬂ Qrte. N o Carme ci;fIQC,FO’IId_J dheyy et £ have
Lnigre Nnamos - Sph & vierry cal O TP fole - 2oh
SOmL name , thon the UnigLe Mame rcule —<E Vio ot
Glem“ﬁ: MS-Das -3 aliows én‘a'ﬁ,}_ﬁ—.ﬁﬁ_’?qf:km
pvle aame |, woOhile GT STH.N ANOE R E:l-.gn:qck-rc_!
pile nome . WA aingle resel wrer on a <ingle level
ci.if'CQC-I'O"UJ o E\i._nd -zt CUPL"‘ colipo o cemormbert e
NUmes of all ke piles ;| a8 twe na- of prles <ncecea
ses -
“The Crouchorte o .Qin?‘_l ‘l«gueﬁ d_l.l"t,g_c ,Lorca Qi
be rreprrosentect as —

,@jrfﬂW\;‘fﬂ H&A | PG DM bﬁfimﬁﬁﬂ
A e
2] @ O

G?-—"‘r'b:}gg :

(®) Tuo—<avel Qircectocy —
R rogoc AIRNA < the op
AV Single —Jevel durce clortr 4 Conpus cw’ipile nasa
Lo bocon dOpperead ugerty . T0 cwvoid kis coppusion,

Crreatr o Sgpacade c::l.,irm_e.l-ﬁ-cv bot €ach usew -
SN Tuo-|evael &;@c;ﬂq}'

?:c—;cha-uJ f0ch wlerc hay —<lt own beex brle m
r@_‘-__—cett,{{u_FD__) - each OVFD hat a Cimilac S Friaetora.
k}}._Q_l:: wse _jok glaaks | dhe Cyslem’s rmas tee
plle durcocther %HTF-Ejgeqrcckrd © AOkeon a wgex rcefpercs
I a 'Paﬂ;!ic:.klﬂrt gnle L his pvon YF D —_-E_.;_ 2t eanchod .
—Tre Lbrcuchurece ofp Two- level d,.’rfacf-orra Qoun ke
rco pregrentcd Ay %

wtert 1 |usem | ugex 3| ucerc 4 S M FD

r—l—i I I i Hurl? .
e e
e3n o PenNeg — &5

w5 : \:h\\\‘ - :
tﬁrﬂ%—*'{'l.l;g‘l"‘ri muu‘-r,.t@?“ﬁg“’"ﬁ ..

Hoh, PaDH HGBA B €n3 ., Dt
J &C,fp s L a} i P)

id

. s vyl . o c .
One advantage op Anig cljf't.éf-’-l'ﬂ"{ej‘ QFrcaaciusce 72 FO
molve the ColliQicn. Prebl€wat - () 170 &

e {rreo Qimuhicte of TTwo-level ci_imc:h:r?
Vbeve burte Can e r‘LQ_,PftQ_g_.efd—t,cl o —y

* Y
- e

-

e can <@xtend Hha dircectecy Qhaucluscs to a

l:'”fﬂ-ﬂ- op mb‘.hqajJ ho:igqhd . "This allowne pwesex o Crigale
-~ Xasto ¢ |

Meie 0o Qub iome,t and ol'.ca%'rz—e_ -h-..e_.rr_ Piies

B i _ :
hmd.maia Ny Ecael e Vlta - taack Common ci_i'rta.c_t,.w-

e,

e ———

T

o

:‘:"fcﬂl-"rﬂ’tmclfume Jokich conicke Op J“"‘“ rr ook Ao C:-:;q
everty prle, <y e has @ LAIgUE Path namg A
Path noame < Je path prem rreot;, thstoogh o
Sob-dimcectorcies 10 a Qpecipred ple . A CUFCDMN’}
contasns a tek op piles And Sub-circac foried -

Iﬂ]] 'h-«.g
; Sub-Airtoclorcies have Mo Oawe -cnfertnedd poTrmalk TRy

-Shrue Farce et tYus con ke rte preceatcsl it —

ath

noame

_£32 Rook/)6 wy a1 (o

@. x&c‘dcb‘c Ghrcocph Qircocton —‘y.
a0 e e e |

: ~ Treee ¢ bt burce di._:'fte{'_}or_t Con 'k < hovco
Piles o dirceclortien - o avold 4u;c ConCept , ar

- / '

Mag e {:ELI@{L"OE Shructurte 7 Pnve aded CoxMe ol
acyel.c arca.p:., c:‘{_;rnqa,;aar;t_. vﬂ? ace Hc'f:c ﬁrc&pk a llet
A ircocloties o have chamod Coub-dirtaClorciey and

bfles - TThe Qame e orc -ﬂub-_d.;r{ﬂ,ﬂ-lart;fq% may bt

<n . cuppecealt, m%.?é?.fﬂ-%‘ An acyclc 3::Mh .
Ts Ymorne & xA than -Ciwple mg.&%mu::-}-un:g,
boh O Timore SeephiE gl S A M fha e 1 sid Lilowe]
. by - -

Lavth Wil el uciarte A ‘dole Flon - gp-grté_}r’ﬁ-ﬂ’;

~—To ovord An s ?’tml-l«éwf 2Lome Sys Feon :dp&:n"f'l

1

alow shared climoctertt . ‘

“The QVYrucburte poT Mie can be r‘cgpmqjenffo“
a8 -

aeeE <[5

- -—DC* .
e - Preotecton -
e i

Rhen Trpocmatc’on < Kepk ©n a Comput terc
Splemawe mapk kg, kear < sape paom phyeicad

M’—iﬂc“'%d TMPIOpRT G ccers - 'P'h'% .-:"OJ ‘clowrnage
T provided by duplicabe copley op pules's File S ptlems

L can be ci.amci.er.l. Im.e] rhacdeoa ree p-’ff’éks"féem{_, potoL T oy~ .

\weto e ete . !

SMprropet Accets Cam be preovicdedt B 70
m‘""‘d oaYyl, Por a Smah Qin uS et Syt tene e
Provicle prokeckion b phyticodly, riemoving Hee

itk emd locking dee . Bt an rou ! L ¥ 0y lems
CILC rrochaniems e rweoded . e

'—:td\pe.s op Pccets :-)

ST o e R e S
=te imFCCf kwr] ey TS Q. darteck e Sl P tne Qb i
}"ﬂ le Qeceas piles - Egelermd that dorel perrmib Aceess
to e jler op othe diews clonot rood Preokec kan

“Thitl , KYe can anuid.a Comnglete Protec kcon I:-a pPreohy —
'ﬁi“_“%__ﬂmﬁaL- |

Preteckron nechaniom preovi
Qccess by Heniting dre
be aade - Sever
Conbcolled ~ -2 —%

R —

cloy @A tbralted

t4fe ob accere dhot can
tPes o opecationy ey be

i
]

¥
=

T g A st S Y
o Raed , womibe, Execute , append ,hatabe, w;m%

Rccess Conbrel < -

o P

uterc nreode duppeent

! durcectorty . “Thoe mosk generc |
7L @ acdess coalbre] sokich ._gpea:p(j
name cndd Hho fyees of accesc Aatlowed prT":Q-e?;;:;#
T8 U T N oy e i {0 roguetl- Fo access =t 14
cul a t\l]_,‘?_ a i Rpy Dl C e clct 4o ocrCCcess .[r&Ldﬂ&Scm_
o ket paiba Haalb E*”“‘-" Sh Huob usecc r:if;c ! ;;T
O rtegoated Qccess , oo e Oreccess owed - |
Odhert wolce ' prrotece Frlon violaftrfon O©OcCeuTs -

fyped ofp ccceds ho a pake o

ol Cchome o Tmmplemn
Az LARESrT
1

|

F;]*E’ Syeltemn S beuaChamce = =

et e e Can e SE e e et
File Quslean. preovidis e o chanicm o online
Stocage oad @eocets Fo pile cankaid® contents ench
cﬂ.inca Aokl oOnd P-’roarc.mm.l ""'I'm prle <yt tem
rce o 1cdeo Pemmﬂ,nen}l\#- on ge%:ﬂc;’ﬂfg_a € yrrage
Hhidoh g Logigred to P%LMTGL}‘:?(o rmound
op data permanenakly . _ "

T pv’ccy\-_ln‘cﬂg ein eppicseat cund
cosveniead’ Occees 16 Hho Aiek e 08 —fmpose
one ot morte [hile eqatemi o aollow He ddada to

be -L#-Oftllt'ﬂ} lacabct and Co #rcreved -e_a.i;]a . o
Pile System hselp compoled op many dippercoat
levets aad e level QtTuchurce o hile 8 ptlerm

can be rreprrcs-ecnbced s = 4 4 ™
‘E Plﬂ iCa bron Prtoﬁ;tg_m \
¢’ .t

L sogical file Qutlem 3

> N
tt'h e m.znn co_tzon
O el ‘e

Basic File Cyticm —}

a2 -'1:-;} Conteal |

& 1 4] : R ks e r
%M - . n e "g'x‘“\f'cv" i R - S S

Memory Management

1. Memory allocation techniques
a. Contiguous memory allocation
b. Non contiguous memory allocation
2. Swapping
3. Paging
a. Segmentation, virtual memory using paging
4. Demand paging, page fault handling

Memory Management

Some of the issues involved in the main memory.

Allocation: First of all the processes that are scheduled to run must be resident in the memory. These processes
must be allocated space in main memory.

Swapping, fragmentation and compaction: If a program is moved out or terminates, it creates a hole, (i.e. a
contiguous unused area) in main memory. When a new process is to be moved in, it may be allocated one of the
available holes. It is quite possible that main memory has far too many small holes at a certain time. In such a
situation none of these holes is really large enough to be allocated to a new process that may be moving in. The
main memory is too fragmented. It is, therefore, essential to attempt compaction. Compaction means OS re-
allocates the existing programs in contiguous regions and creates a large enough free area for allocation to a
new process.

Garbage collection: Some programs use dynamic data structures. These programs dynamically use and
discard memory space. Technically, the deleted data items (from a dynamic data structure) release memory
locations. However, in practice the OS does not collect such free space immediately for allocation. This is
because that affects performance. Such areas, therefore, are called garbage. When such garbage exceeds a
certain threshold, the OS would not have enough memory available for any further allocation. This entails
compaction (or garbage collection), without severely affecting performance.

Protection: With many programs residing in main memory it can happen that due to a programming error (or
with malice) some process writes into data or instruction area of some other process. The OS ensures that each
process accesses only to its own allocated area, i.e. each process is protected from other processes.

Virtual memory: Often a processor sees a large logical storage space (a virtual storage space) though the
actual main memory may not be that large. So some facility needs to be provided to translate a logical address
available to a processor into a physical address to access the desired data or instruction.

10 support: Most of the block-oriented devices are recognized as specialized files. Their buffers need to be
managed within main memory alongside the other processes. The considerations stated above motivate the
study of main memory management. One of the important considerations in locating an executable program is
that it should be possible to relocate it any where in the main memory.

Memory allocation

Let us assume the main memory is a linear map or one-dimensional array. If the address is known then its
content can be fetched. So, a process residing in the main memory, set the program counter to an absolute
address of its first instruction and can initiate its run. Also, if the locations of data is known then it can be

1

fetched. This means that a process can be load with only absolute addresses for instructions and data, only
when those specific addresses are free in main memory. But This will loose flexibility with regard to loading a
process. For instance, we cannot load a process, if some other process is currently occupying that area which is
needed by this process. This may happen even though we may have enough space in the memory. To avoid this
processes are generated to be relocatable.

All instretions and data references

melative to the enfry point of the process
Process

conbext

information Process control block
Entry ..-*“'fr] Turmp
point of - instrction
program The executable code
References

to access
data

The data area

Initially, all the addresses in the process are relative to the start address. With this flexibility the OS can
allocate any area in the memory to load this process. Its instruction, data, process context (process control
block) and any other data structure required by the process can be accessed easily if the addresses are relative.
Suppose a process created a hole on moving out. If non-relocatable addresses are to be used then severe
problem can occure.

When the process moves back in, that particular hole (or area) may not be available any longer. In case we can
relocate, moving a process back in creates no problem. This is so because the process can be relocated in some
other free area.

Contiguous memory allocation:

Contiguous memory allocation is a classical memory allocation model that assigns a process consecutive

memory blocks (that is, memory blocks having consecutive addresses). When a process needs to execute,
memory is requested by the process. The size of the process is compared with the amount of contiguous main
memory available to execute the process. If sufficient contiguous memory is found, the process is allocated
memory to start its execution. Otherwise, it is added to a queue of waiting processes until sufficient free
contiguous memory is available.

The contiguous memory allocation scheme can be implemented in operating systems with the help of two
registers, known as the base and limit registers. When a process is executing in main memory, its base register
contains the starting address of the memory location where the process is executing, while the amount of bytes
consumed by the process is stored in the limit register. A process does not directly refer to the actual address for
a corresponding memory location. Instead, it uses a relative address with respect to its base register. All
addresses referred by a program are considered as virtual addresses. The CPU generates the logical or virtual
address, which is converted into an actual address with the help of the memory management unit (MMU). The
base address register is used for address translation by the MMU. Thus, a physical address is calculated as
follows:

Physical Address = Base register address + Logical address/Virtual address

The address of any memory location referenced by a process is checked to ensure that it does not refer to an
address of a neighboring process. This processing security is handled by the underlying operating system.

One disadvantage of contiguous memory allocation is that the degree of multiprogramming is reduced due to
processes waiting for free memory.

Non-contiguous memory allocation:

Noncontiguous memory allocation assigns the separate memory blocks at a different location in memory
space in a nonconsecutive manner to a process requesting for memory. The noncontiguous memory allocation
also reduces the memory wastage caused due to internal and external fragmentation. As it utilizes the memory
holes, created during internal and external fragmentation.

Difference between contiguous and non contiguous memory allocation

BASIS Contiguous memory allocation Noncontiguous memory allocation
Basic Allocates consecutive blocks of | Allocates separate blocks of
memory to a process memory to a process.
Overheads Contiguous memory allocation | Noncontiguous memory allocation

does not have the overhead of
address translation while execution
of a process

has overhead of address translation
while execution of a process.

Execution rate

A process executes faster in
contiguous memory allocation

A process executes quite slower
comparatively in noncontiguous
memory allocation.

Solution

The memory space must be divided
into the fixed-sized partition and
each partition is allocated to a
single process only

Divide the process into several
blocks and place them in different
parts of the memory according to
the availability of memory space
available.

Table

A table is maintained by operating
system which maintains the list of
available and occupied partition in
the memory space

A table has to be maintained for
each process that carries the base
addresses of each block which has
been acquired by a process in
memory.

Types of memory allocation:

1. Best fit memory allocation: In this method, the operating system first searches the whole of
the memory according to the size of the given job and allocates it to the closest-fitting free partition in
the memory, making it able to use memory efficiently. Here the jobs are in the order from smallest job

to largest job.

2. Worst fit memory allocation: Worst Fit allocates a process to the partition which is largest sufficient
among the freely available partitions available in the main memory. If a large process comes at a later
stage, then memory will not have space to accommodate it.

3. first fit memory allocation: This method keeps the free/busy list of jobs organized by memory location,
low-ordered to high-ordered memory. In this method, first job claims the first available memory with

space more than or equal to it’s size. The operating system doesn’t search for appropriate partition but
just allocate the job to the nearest memory partition available with sufficient size.

2. SWAPPING :

Swapping is a mechanism in which a process can be swapped temporarily out of main memory (or move) to
secondary storage (disk) and make that memory available to other processes. At some later time, the system
swaps back the process from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps in running multiple and big processes

in parallel.
Main Memary

Secondary Memory

Pracess P1

Process P3
Process P2

P1 goes for |/O wait Prococs P

Swap out
Process P1 © ———

Swapin
N - — Process P3 Process Pn

P1 comes back after /0

Swap out
Process P3

Swapin
— —_— m— Procesy BY

3. FRAGMENTATION :

The total time taken by swapping process includes the time it
takes to move the entire process to a secondary disk and then
to copy the process back to memory, as well as the time the
process takes to regain main memory.

Let us assume that the user process is of size 2048KB and on
a standard hard disk where swapping will take place has a
data transfer rate around 1 MB per second. The actual
transfer of the 1000K process to or from memory will take
2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000
milliseconds plus other overhead where the process competes
to regain main memory.

As processes are loaded and removed from memory, the free memory space is broken into little pieces. It
happens after sometimes that processes cannot be allocated to memory blocks considering their small size and
memory blocks remains unused. This problem is known as Fragmentation.

Fragmentation is of two types —

External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it is not contiguous, so it

cannot be used.

Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left unused, as it cannot be used by

another process.
Fragmented memory before compaction
. . .

Memory after compaction

External fragmentation can be reduced by compaction or shuffle memory contents to place all free memory
together in one large block. To make compaction feasible, relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the smallest partition but large enough for
the process.

4. PAGING :

A computer can address more memory than the amount physically installed on the system. This extra memory is
actually called virtual memory and it is a section of a hard that's set up to emulate the computer's RAM. Paging
technique plays an important role in implementing virtual memory.

Paging is a memory management technique in which process address space is broken into blocks of the same
size called pages (size is power of 2, between 512 bytes and 8192 bytes). The size of the process is measured
in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory called frames and the
size of a frame is kept the same as that of a page to have optimum utilization of the main memory and to avoid
external fragmentation.

L DlEin e Seconeanbamary
Operating System
. | Address Translation:
Process P Process P — Page 4 FO
Firs 100 bytes page 0 - '” Page address 1is called logical address and
Sobe Page 1 | ProcessP-Page0 | F2 represented by page number and the offset.
TR Page2 | 1 > Process P — Page 2 | 3 .
S | Logical Address = Page number + page offset
Page 3 5 Process P—Page 1 [Fa . .
R 0 e = ; _ Frame address is called physical address and
- | ProcessP—Page 7 F5
Sixth 100 bytes e ‘o : represented by a frame number and the offset.
ok b Page & I Process P — Page N .
Eight 190 bytes | e Physical Address = Frame number + page offset
Page 7
et Pages for other processes | ..
fagel Pages for other pmcesse; -

Pages for other processes | FN

_ | A data structure called page map table is used to
keep track of the relation between a page of a process to a frame in physical memory.

When the system allocates a frame to any page, it translates s
this logical address into a physical address and create entry °

F1

into the page table to be used throughout execution of the -~ =~ e | o e
= set ; Offset =3 | F2
program. m-r{ber mer | O 7
f
When a process is to bg executed, its corresponding pages \\ T /
are loaded into any available memory frames. Suppose you ~s| : ~

have a program of 8Kb but your memory can accommodate

only 5Kb at a given point in time, then the paging concept

will come into picture. When a computer runs out of RAM, _ _

the operating system (OS) will move idle or unwanted Panktiap Toble
pages of memory to secondary memory to free up RAM for other processes and brings them back when needed
by the program.

FN

This process continues during the whole execution of the program where the OS keeps removing idle pages
from the main memory and write them onto the secondary memory and bring them back when required by the
program.

Advantages and Disadvantages of Paging:

Paging reduces external fragmentation, but still suffer from internal fragmentation.
Paging is simple to implement and assumed as an efficient memory management technique.
Due to equal size of the pages and frames, swapping becomes very easy.

Page table requires extra memory space, so may not be good for a system having small RAM.

5. VIRTUAL MEMORY:

A computer can address more memory than the amount physically installed on the system. This extra memory
is actually called virtual memory and it is a section of a hard disk that's set up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical memory. Virtual
memory serves two purposes. First, it allows us to extend the use of physical memory by using disk. Second, it
allows us to have memory protection, because each virtual address is translated to a physical address.

Following are the situations, when entire program is not required to be loaded fully in main memory.

User written error handling routines are used only when an error occurred in the data or computation.
Certain options and features of a program may be used rarely.

Many tables are assigned a fixed amount of address space even though only a small amount of the table
is actually used.

The ability to execute a program that is only partially in memory would counter many benefits.
Less number of I/O would be needed to load or swap each user program into memory.

A program would no longer be constrained by the amount of physical memory that is available.

e Each user program could take less physical reual Address hyscalnddress | ETIOTY, - mOTE
programs could be run the same time, with a = ——— . corresponding
increase in CPU utilization and throughput. » ; By -

Modern microprocessors intended for general-purpose € |4 = use, a memory
management unit, or MMU, is built into the hardware. o I™M| = The MMU's job
is to translate virtual addresses into physical addresses ** SO b B which s shown in
the figure. o
b 24K A
I T
Virtual memory is commonly implemented by demand -0 e] paging. It can

also be implemented in a segmentation system. Demand
also be used to provide virtual memory.

segmentation can

Secondary Memary

6. DEMAND PAGING:

A, demand paging systemisvguite similar to a paging system with swapping where processes reside in
secondary memory and pages are loaded only on demand, not in advance. When a context switch occurs, the

operating system does not copy any of the old program’s pages out to the disk or any of the new program’s
A ! A K pages into the main memory Instead, it just begins executing the
- . L new program after loading the first page and fetches that
; E "N“ program’s pages as they are referenced.
E E o
5
Process 2 swap OUT a While executing a program, if the program references a page
i E R which is not available in the main memory because it was swapped
z : : out a little ago, the processor treats this invalid memory reference
: E— ; as apage faultand transfers control from the program to the
)) 7 operating system to demand the page back into the memory.
Advantages:

Following are the advantages of Demand Paging —

Large virtual memory.
More efficient use of memory.
There is no limit on degree of multiprogramming.

Disadvantages:

o Number of tables and the amount of processor overhead for handling page interrupts are greater than in

the case of the simple paged management techniques.

7. PAGE FAULT AND PAGE FAULT HANDLING :

A page fault occurs when a program attempts to access data or code that is in its address space, but is not
currently located in the system RAM. So when page fault occurs then following sequence of events happens :

The computer hardware traps to the kernel and program counter (PC) is saved on the stack. Current
instruction state information is saved in CPU registers.

An assembly program is started to save the general registers and other volatile information to keep the OS
from destroying it.

Operating system finds that a page fault has occurred and tries to find out which virtual page is needed.
Some times hardware register contains this required information. If not, the operating system must retrieve
PC, fetch instruction and find out what it was doing when the fault occurred.

Once virtual address caused page fault is known, system checks to see if address is valid and checks if
there is no protection access problem.

If the virtual address is valid, the system checks to see if a page frame is free. If no frames are free, the
page replacement algorithm is run to remove a page.

If frame selected is dirty, page is scheduled for transfer to disk, context switch takes place, fault process is
suspended and another process is made to run until disk transfer is completed.

e Assoon as page frame is clean, operating system looks up disk address where needed page is, schedules
disk operation to bring it in.

o When disk interrupt indicates page has arrived, page tables are updated to reflect its position, and frame
marked as being in normal state.

o Faulting instruction is backed up to state it had when it began and PC is reset. Faulting is scheduled,
operating system returns to routine that called it.

o Assembly Routine reloads register and other state information, returns to user space to continue execution.

8. PAGE REPLACEMENT ALGORITHM:

Page replacement algorithms are the techniques using which an Operating System decides which memory
pages to swap out, write to disk when a page of memory needs to be allocated. Paging happens whenever a
page fault occurs and a free page cannot be used for allocation purpose accounting to reason that pages are not
available or the number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced again, it has to read in from
disk, and this requires for I/O completion. This process determines the quality of the page replacement
algorithm: the lesser the time waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the pages provided by
hardware, and tries to select which pages should be replaced to minimize the total number of page misses,
while balancing it with the costs of primary storage and processor time of the algorithm itself. There are many
different page replacement algorithms. We evaluate an algorithm by running it on a particular string of
memory reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are generated artificially or by
tracing a given system and recording the address of each memory reference. The latter choice produces a large
number of data, where we note two things.

o For a given page size, we need to consider only the page number, not the entire address.

o If we have a reference to a page p, then any immediately following references to page p will never
cause a page fault. Page p will be in memory after the first reference; the immediately following
references will not fault.

For example, consider the following sequence of addresses — 123,215,600,1234,76,96

If page size is 100, then the reference string is 1,2,6,12,0,0
8.1 First In First Out (FIFO) algorithm:

e Oldest page in main memory is the one which will be selected for replacement.

o Easy to implement, keep a list, replace pages from the tail and add new pages at the head.

ReferenceString:0,2,1,6,4,0,1,0,3,1,2, 1

Misses IHOMLNOX X X X X

FaultRate=9/12 =0.75

8.2 Optimal Page algorithm

e An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An optimal
page-replacement algorithm exists, and has been called OPT or MIN.

e Replace the page that will not be used for the longest period of time. Use the time when a page is to be
used.

Refarance string : 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1

rlisse=s o = > = > >
o o 3
2 et 2 3 2
T i 2 1
& 4 a4
Fault Rate = 6 / 12 = 0.50

8.3 Least Recently Used (LRU) algorithm

o Page which has not been used for the longest time in main memory is the one which will be selected for
replacement.

Easy to implement, keep a list, replace pages by looking back into time.

ReferenceString:0,2,1,6,4,0,1,0,3,1, 2,1

Misses IR X X XX ® X

FaultRate=8 /12 =0.67

8.4 Page buffering algorithm

e To get a process start quickly, keep a pool of free frames.
e On page fault, select a page to be replaced.

e Write the new page in the frame of free pool, mark the page table and restart the process.

o Now write the dirty page out of disk and place the frame holding replaced page in free pool.

e This algorithm suffers from the situation in which a page is used heavily during the initial phase of a

process, but then is never used again.

9. SEGMENTATION:

Segmentation is a memory management technique in which each job is divided into several segments of
different sizes, one for each module that contains pieces that perform related functions. Each segment is

actually a different logical address space of the program.

When a process is to be executed, its corresponding segmentation
are loaded into non-contiguous memory though every segment is
loaded into a contiguous block of available memory.

Segmentation memory management works very similar to paging
but here segments are of variable-length where as in paging pages
are of fixed size.

A program segment contains the program's main function, utility
functions, data structures, and so on. The operating system
maintains a segment map table for every process and a list of
free memory blocks along with segment numbers, their size and
corresponding memory locations in main memory. For each
segment, the table stores the starting address of the segment and
the length of the segment. A reference to a memory location
includes a value that identifies a segment and an offset.

Process P

Segment 1

Segment 1

Segment 3

Segment N

Siegment Map tablo

Size
| s00
' 200

1100

Memary Address

100
500
00

NM

1,

Loy

>

Main Memory

Operating System

100

.L'{JIJ
. !BD.
.405
! 500
E 600

00

800

MM

10

3/17/2020 Operating System - Processes - Tutorialspoint

Operating System - Processes

Process

A process is basically a program in execution. The execution of a process must progress in a sequential
fashion.

A process is defined as an entity which represents the basic unit of work to be implemented in the system.

To put it in simple terms, we write our computer programs in a text file and when we execute this program,
it becomes a process which performs all the tasks mentioned in the program.

When a program is loaded into the memory and it becomes a process, it can be divided into four sections
— stack, heap, text and data. The following image shows a simplified layout of a process inside main
memory —

Stack
A
W
Heap
Data
Text

https://www.tutorialspoint.com/operating_system/os_processes.htm 1/5

3/17/2020 Operating System - Processes - Tutorialspoint

S.N. Component & Description

Stack

The process Stack contains the temporary data such as method/function parameters, return
address and local variables.

€ Heap
This is dynamically allocated memory to a process during its run time.

3 Text
This includes the current activity represented by the value of Program Counter and the contents
of the processor's registers.

4 Data
This section contains the global and static variables.

Program

A program is a piece of code which may be a single line or millions of lines. A computer program is
usually written by a computer programmer in a programming language. For example, here is a simple
program written in C programming language -

#include <stdio.h>

int main() {
printf("Hello, World! \n");
return 0;

A computer program is a collection of instructions that performs a specific task when executed by a
computer. When we compare a program with a process, we can conclude that a process is a dynamic
instance of a computer program.

A part of a computer program that performs a well-defined task is known as an algorithm. A collection of
computer programs, libraries and related data are referred to as a software.

Process Life Cycle

When a process executes, it passes through different states. These stages may differ in different
operating systems, and the names of these states are also not standardized.

In general, a process can have one of the following five states at a time.

https://www.tutorialspoint.com/operating_system/os_processes.htm 2/5

3/17/2020 Operating System - Processes - Tutorialspoint

S.N. State & Description

Start

This is the initial state when a process is first started/created.

2 Ready
The process is waiting to be assigned to a processor. Ready processes are waiting to have the
processor allocated to them by the operating system so that they can run. Process may come
into this state after Start state or while running it by but interrupted by the scheduler to assign
CPU to some other process.

3 Running
Once the process has been assigned to a processor by the OS scheduler, the process state is
set to running and the processor executes its instructions.

4 Waiting
Process moves into the waiting state if it needs to wait for a resource, such as waiting for user
input, or waiting for a file to become available.

5

Terminated or Exit

Once the process finishes its execution, or it is terminated by the operating system, it is moved
to the terminated state where it waits to be removed from main memory.

Start - > Ready | Running > Terminated

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every process. The
PCB is identified by an integer process ID (PID). A PCB keeps all the information needed to keep track of
a process as listed below in the table -

https://www.tutorialspoint.com/operating_system/os_processes.htm 3/5

3/17/2020 Operating System - Processes - Tutorialspoint

S.N. Information & Description

Process State

The current state of the process i.e., whether it is ready, running, waiting, or whatever.

2 .
Process privileges
This is required to allow/disallow access to system resources.
3
Process ID
Unique identification for each of the process in the operating system.
4 Pointer
A pointer to parent process.
5
Program Counter
Program Counter is a pointer to the address of the next instruction to be executed for this
process.
6 .
CPU registers
Various CPU registers where process need to be stored for execution for running state.
4 CPU Scheduling Information
Process priority and other scheduling information which is required to schedule the process.
8 Memory management information
This includes the information of page table, memory limits, Segment table depending on
memory used by the operating system.
o Accounting information
This includes the amount of CPU used for process execution, time limits, execution ID etc.
10

10 status information

This includes a list of I/O devices allocated to the process.

https://www.tutorialspoint.com/operating_system/os_processes.htm 4/5

3/17/2020 Operating System - Processes - Tutorialspoint

The architecture of a PCB is completely dependent on Operating System and may contain different
information in different operating systems. Here is a simplified diagram of a PCB -

Process ID

State

Pointer

Priority

Program counter

CPU registers

1/O information

Accounting information |

|

etc....

The PCB is maintained for a process throughout its lifetime, and is deleted once the process terminates.

https://www.tutorialspoint.com/operating_system/os_processes.htm 5/5

3/17/2020 Operating System - Properties - Tutorialspoint

Operating System - Properties

Batch processing

Batch processing is a technique in which an Operating System collects the programs and data together in
a batch before processing starts. An operating system does the following activities related to batch
processing —

. The OS defines a job which has predefined sequence of commands, programs and data as a
single unit.

. The OS keeps a number a jobs in memory and executes them without any manual information.
. Jobs are processed in the order of submission, i.e., first come first served fashion.

. When a job completes its execution, its memory is released and the output for the job gets
copied into an output spool for later printing or processing.

Advantages

. Batch processing takes much of the work of the operator to the computer.

. Increased performance as a new job get started as soon as the previous job is finished, without
any manual intervention.

Disadvantages

. Difficult to debug program.
. A job could enter an infinite loop.

. Due to lack of protection scheme, one batch job can affect pending jobs.

https://www.tutorialspoint.com/operating_system/os_properties.htm 1/5

3/17/2020 Operating System - Properties - Tutorialspoint

Multitasking

Multitasking is when multiple jobs are executed by the CPU simultaneously by switching between them.
Switches occur so frequently that the users may interact with each program while it is running. An OS
does the following activities related to multitasking -

. The user gives instructions to the operating system or to a program directly, and receives an
immediate response.

. The OS handles multitasking in the way that it can handle multiple operations/executes multiple
programs at a time.

. Multitasking Operating Systems are also known as Time-sharing systems.

. These Operating Systems were developed to provide interactive use of a computer system at a
reasonable cost.

. A time-shared operating system uses the concept of CPU scheduling and multiprogramming to
provide each user with a small portion of a time-shared CPU.

. Each user has at least one separate program in memory.

. A program that is loaded into memory and is executing is commonly referred to as a process.

. When a process executes, it typically executes for only a very short time before it either finishes
or needs to perform I/O.

. Since interactive I/O typically runs at slower speeds, it may take a long time to complete. During
this time, a CPU can be utilized by another process.

. The operating system allows the users to share the computer simultaneously. Since each action
or command in a time-shared system tends to be short, only a little CPU time is needed for each
user.

. As the system switches CPU rapidly from one user/program to the next, each user is given the
impression that he/she has his/her own CPU, whereas actually one CPU is being shared among
many users.

https://www.tutorialspoint.com/operating_system/os_properties.htm

2/5

3/17/2020 Operating System - Properties - Tutorialspoint

Multiprogramming

Sharing the processor, when two or more programs reside in memory at the same time, is referred as
multiprogramming. Multiprogramming assumes a single shared processor. Multiprogramming increases
CPU utilization by organizing jobs so that the CPU always has one to execute.

The following figure shows the memory layout for a multiprogramming system.

Operating System

Job 1

Job 2

lobn

Empty Space

An OS does the following activities related to multiprogramming.
. The operating system keeps several jobs in memory at a time.
. This set of jobs is a subset of the jobs kept in the job pool.
. The operating system picks and begins to execute one of the jobs in the memory.

. Multiprogramming operating systems monitor the state of all active programs and system

resources using memory management programs to ensures that the CPU is never idle, unless
there are no jobs to process.

Advantages

. High and efficient CPU utilization.

. User feels that many programs are allotted CPU almost simultaneously.

Disadvantages
. CPU scheduling is required.

. To accommodate many jobs in memory, memory management is required.

Interactivity

https://www.tutorialspoint.com/operating_system/os_properties.htm 3/5

3/17/2020 Operating System - Properties - Tutorialspoint

Interactivity refers to the ability of users to interact with a computer system. An Operating system does the
following activities related to interactivity —

. Provides the user an interface to interact with the system.
. Manages input devices to take inputs from the user. For example, keyboard.

. Manages output devices to show outputs to the user. For example, Monitor.

The response time of the OS needs to be short, since the user submits and waits for the result.

Real Time System

Real-time systems are usually dedicated, embedded systems. An operating system does the following
activities related to real-time system activity.

. In such systems, Operating Systems typically read from and react to sensor data.

. The Operating system must guarantee response to events within fixed periods of time to ensure correct
performance.

Distributed Environment

A distributed environment refers to multiple independent CPUs or processors in a computer system. An
operating system does the following activities related to distributed environment -

. The OS distributes computation logics among several physical processors.

. The processors do not share memory or a clock. Instead, each processor has its own local
memory.

. The OS manages the communications between the processors. They communicate with each
other through various communication lines.

Spooling

Spooling is an acronym for simultaneous peripheral operations on line. Spooling refers to putting data of
various 1/O jobs in a buffer. This buffer is a special area in memory or hard disk which is accessible to 1/0
devices.

An operating system does the following activities related to distributed environment -
. Handles I/O device data spooling as devices have different data access rates.

. Maintains the spooling buffer which provides a waiting station where data can rest while the
slower device catches up.

. Maintains parallel computation because of spooling process as a computer can perform 1/O in
parallel fashion. It becomes possible to have the computer read data from a tape, write data to
disk and to write out to a tape printer while it is doing its computing task.

https://www.tutorialspoint.com/operating_system/os_properties.htm 4/5

3/17/2020 Operating System - Properties - Tutorialspoint

Card Reader

Memory

Printer

Advantages

. The spooling operation uses a disk as a very large buffer.

. Spooling is capable of overlapping I/0 operation for one job with processor operations for another job.

https://www.tutorialspoint.com/operating_system/os_properties.htm

5/5

Operating System - Overview

An Operating System (OS) is an interface between a computer user and computer
hardware. An operating system is a software which performs all the basic tasks like
file management, memory management, process management, handling input and
output, and controlling peripheral devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System, Windows
Operating System, VMS, 0S/400, AIX, z/OS, etc.

Definition

An operating system is a program that acts as an interface between the user and the

computer hardware and controls the execution of all kinds of programs.

System Application
Softwares Softwares

Operating System

Following are some of important functions of an operating System.

i Memory Management
i Processor Management
i Device Management
i File Management

i Security

i Control over system performance
i Job accounting
i Error detecting aids

i Coordination between other software and users
Memory Management

Memory management refers to management of Primary Memory or Main Memory.
Main memory is a large array of words or bytes where each word or byte has its

own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For
a program to be executed, it must in the main memory. An Operating System does
the following activities for memory management:

i Keeps tracks of primary memory, i.e., what part of it are in use by whom, what
part are not in use.

i [n multiprogramming, the OS decides which process will get memory when and
how much.

i Allocates the memory when a process requests it to do so.

i De-allocates the memory when a process no longer needs it or has been
terminated.

Processor Management
In multiprogramming environment, the OS decides which process gets the
processor when and for how much time. This function is called process

scheduling. An Operating System does the following activities for processor
management:

i Keeps tracks of processor and status of process. The program responsible for
this task is known as traffic controller.

i Allocates the processor (CPU) to a process.

i De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers.
It does the following activities for device management:

i Keeps tracks of all devices. The program responsible for this task is known as
the I/0O controller.

i Decides which process gets the device when and for how much time.
i Allocates the device in the most efficient way.

i De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage.
These directories may contain files and other directions.

An Operating System does the following activities for file management:

i Keeps track of information, location, uses, status etc. The collective facilities
are often known as file system.

i Decides who gets the resources.

i Allocates the resources.

i De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System performs:

i Security -- By means of password and similar other techniques, it prevents
unauthorized access to programs and data.

i Control over system performance -- Recording delays between request for a
service and response from the system.

i Job accounting -- Keeping track of time and resources used by various jobs
and users.

i Error detecting aids -- Production of dumps, traces, error messages, and other
debugging and error detecting aids.

i Coordination between other software and users -- Coordination and
assignment of compilers, interpreters, assemblers and other software to the various
users of the computer systems.

OPERATING SYSTEM STRUCTURE - |
Operating System Structure:

The structure of an operating system is dictated by the model employed in building them. An operating
system model is a broad framework that unifies the many features and services the operating system
provides and tasks it performs. Operating systems are broadly classified into following categories,
based on the their structuring mechanism as follows:

a. Monolithic System
b. Layered System

c. Virtual Machine

d. Exokernels

e. Client-Server Model

Monolithic System

The components of monolithic operating system are organized haphazardly and any module can call
any other module without any reservation. Similar to the other operating systems, applications in
monolithic OS are separated from the operating system itself. That is, the operating system code runs in
a privileged processor mode (referred to as kernel mode), with access to system data and to the
hardware; applications run in a non-privileged processor mode (called the user mode), with a limited
set of interfaces available and with limited access to system data. The monolithic operating system
structure with separate user and kernel processor mode is shown in Figure.

Main
procedure

Service
proceduras

Litility
proceduras

Application Application
Program - B W Program
User Mode

Kernel Mode

System Services

3 A A

Operating
System

Procedures ‘\

Y l ¥
—b{ Hardware

N\

Parithy
Typewritten Text

Parithy
Typewritten Text
OPERATING SYSTEM STRUCTURE - I

This approach might well be subtitled "The Big Mess." The structure is that there is no structure. The
operating system is written as a collection of procedures, each of which can call any of the other ones
whenever it needs to. When this technique is used, each procedure in the system has a well-defined
interface in terms of parameters and results, and each one is free to call any other one, if the latter
provides some useful computation that the former needs.

Example Systems: CP/M and MS-DOS

Layered Operating System

The layered approach consists of breaking the operating system into the number of layers(level), each
built on the top of lower layers. The bottom layer (layer 0) is the hardware layer; the highest layer is the
user interface.

The main advantages of the layered approach is modularity. The layers are selected such that each uses
functions (operations) and services of only lower-level layers. This approach simplifies debugging and

$ywtém verifications. That is in this approach, the Nth layer can access services provided Bylagby Ny
1)th layer and provide services to the (N+1)th layer. This structure also allows the operating system to
be debugged starting at the lowest layer, adding one layer at a time until the whole system works
correctly. Layering also makes it easier to enhance the operating system; one entire layer can be
replaced without affecting other parts of the system.

Application Application
FProgram ot Program

User Mode

Kernal hMode

System Services

¥

File System

L

Memory and /O Device Management

h J
Processor Scheduling

L v

Hardware

The layer approach to design was first used in the THE operating system at the Technische Hogeschool
Eindhoven. The THE system was defined in the six layers , as shown in the fig below.

Layer

Function

The operator

User programs

Input/output management

Operator-process communication

Memory and drum management

8

Processor allocation and multiprogramming.

Example Systems: VAX/VMS, Multics, UNIX

PROCESS COMMUNICATIONS

* Interprocess communication is the mechanism provided by
the operating system that allows processes to communicate
with each other. This communication could involve a process
letting another process know that some event has occurred or
the transferring of data from one process to another.

Interprocess

Communication
» Process P2

Process P1 <

PROCESS COMMUNICATIONS

Processes can communicate with themselves in two
ways.

Message-passing model

Shared memory model

Message
passing model
Communication

Shared memory
model

PROCESS COMMUNICATIONS

Message-passing _model: Here the information is exchanged
through an interprocess communication which is provided by

the operating system.

Process A M
Process B M (=&
Karnel M

<€

* The communication among processes takes place by system
calls get hostid, get processid, open connection, close
connection, accept connection, wait for connection, read
message and write message.

Before the communication, a connection should be opened
between communicating processes

The name of the communicating processes must be known
to operating system at priori.

Each computer in a network has a host name and each
process has a process name.

The process wants to communicate first execute the open
connection system call and then get hostid and get
processid call of the recipient process and send it to the
karnel along with message.

The karnel sends a request for a connection to the recipient
process. If the recipient process is not ready then it must
wait.

When the recipient process is ready , then the recipient
process execute accept connection.

Once the connection between karnel and the recipient
process is open, the message is then send.

Once the message exchange completed, both the process
execute close connection system call.

Message passing communication is useful when small
number of data needs to be exchanged.

PROCESS COMMUNICATIONS

Shared memory model: Here the information is exchanged through
a memory shared by both the processors.

Process A M

—
Shared memory M
Process B S S
Karnel

« The communication among processes takes place by executing
map memory system call.

Before communication through shared memory , both the
processor should agree to share their memory.

They may then exchange information by reading and
writing data in these shared memory.

The form of data and the location are determined by these
processes and are not under the control of operating
system.

Shared memory communication is useful when large
number of data needs to be exchanged with maximum
speed.

Process Communications

In addition to above , logically several methods can be
implemented to established link between two processes and send,
receive operations to achieve interprocess communication.

Direct Communication

Indirect Communication

Symmetric communication
Asymmetric communication
Automatic buffering communication

Sl

Direct Communication

Here each process that wants to communicate must explicitly
address the recipient or sender of the communication i.e. this
direct communication shows symmetry in addressing. Hence this
type of communication also known as Symmetric communication.

A link is established automatically between each pair of process
who wants to communicate. i.e. each process needs to know the
identity of other process to communicate.

Between each pair of processes , there exists exactly one link.
The link may be unidirectional or bidirectional.

Proces P P

RECEIVE (Q, Msg)

 The sender process execute the send(P , message) operation to
send the message to the process P.

* The receiver process execute receive(Q , message) operation to
receive a message from process Q which notify the process Q that
the message has been consumed.

Asymmetric communication
* Here only the sender process explicitly address the recipient.

* A link is established automatically between each pair of process
who wants to communicate. Here the sender must know the
identity of the recipient.

* Between each pair of processes , there exists exactly one link.

* The link may be unidirectional.

 The sender process execute the send(P , message) operation to
send the message to the process P.

 The receiver process execute receive(id , message) operation to
receive a message from any process.

Process Q Process P

Send(P, Msg) Receive (id, Msg)

e Both symmetric and Asymmetric communication has limited
modularity i.e. changing the name of one process may necessitate

examining all other process definitions.

Indirect Communication:

 Here communication can be done through a mailbox which can be
viewed abstractly as an object into which message can be placed
by a process and from which message can be removed.

* Each mailbox has unique identification.

* Alink will be established between at most a single pair of
processes who shared the mailbox.

Process P Send(A , msg) Mailbox A Receive(A , msg) Process Q
msg

e This link can be unidirectional or bidirectional.

* Now the process who wants to send message can send the
message to the mailbox by calling send(A , msg) where A is the id

of mailbox.
* The receiver will receive the message from Mailbox A by calling

receive(A, msg).
A mailbox can be owned either by a process or by the operating
system.

Mailbox owned by process:
* Here the mailbox is attached to a process.

 The process to whom the mailbox is attached is declared as the
owner who can only receive message through this mailbox.

e Other processes who use this mailbox can only send message into
this mailbox.

 When the owner of the mailbox terminates , the mailbox will

disappear and all other processes who share the mailbox will be
notified that this mailbox is no longer exist.

Mailbox owned by operating system:

Here mailbox is independent and not attached to any process.

The operating system allow a process to create the mailbox and
that process become the owner of that mailbox.

The owner process can only receive the message.

This ownership and receive privilege can be passed to another
process through proper system call.

When the mailbox is no longer used by any process, the operating
system should reclaim the space provided to mailbox by calling
garbage collector.

Automatic buffering:

Here a link will be established between the processes who wants
to communicate.

The link may reside the message temporarily.

A process wants to communicate, sends a message to other
process. The message will be send without any delay.

After receiving, the process acknowledge the sender with
proper signal.

Let Process P wants to send message to Process Q.
process P executes the sequence

* Send (Q, Msg)

e Receive(Q,msg)

Then process Q executes the sequence

* Receive (P, Msg)

* Send(P, ‘Ack’)

In the case of Automatic Buffering, the link may have Zero capacity,
Bounded capacity or Unbounded capacity.

Zero capacity link-

* Thisis also known as automatic buffering .

 The queue has maximum length O i.e. the link can not have any
message waiting in it. Here the sender and receiver must
synchronized for a message to be transferred.

Bounded capacity & Unbounded capacity:

 Here the queue has finite length n but it is infinite length for
unbounded capacity

 if the queue is not full, the sender is sending the message
continuously (Bounded).

* If the queue is full, then the sender must wait until space is
available in the queue (Bounded).

* |In case of Unbounded capacity any number of message can wait in
the link but the sender never delayed.

Process Control Block

 Each process is represented in the operating system by a
Process Control Block (PCB) or Task Control Block.

* A Process Control Block is a data structure maintained by the
Operating System for every processes.

« The PCB is identified by an integer process ID (PID) which
keeps all the information needed to keep track of a process.

Pointer Process
State

Process Number

Program Counter

Register

Memory limits

List of open files

Process State- The current state of the process i.e. whether it is new,
ready, running, waiting, halted and so on.

Pointer -A pointer to parent process.

Process Number - Unique identification for each of the
process in the operating system.

Program counter- The counter indicates the address of the
next instruction to be executed for this process.

Memory management information - This includes the
information of page table, memory limits, Segment table
depending on memory used by the operating system.

Register- The registers may vary in numbers and types,
depending on the computer architecture. They may be
accumulator, index register, stack pointer, general purpose
register etc. these registers are being used to save the state
information of a process when an interrupt occurs, and allow
the process to be continued correctly afterwards.

* List of open files — These are the files which are currently being
used by the process in execution.

Beyond these other information may also stored in the PCB.

CPU scheduling information — this includes a process priority,
pointer to scheduling queue and other scheduling parameters.

Accounting Information — It includes the amount of CPU and real
time used, time limits, account numbers, job or process number
and so on.

|/O status information — It includes the list of I/O devices allocated
to this process, list of open files and so on.

