LECTURE NOTES

on
DATA STRUCTURES

UNIT-I

PROGRAMMING PERFORMANCE

Performance of a program: The performance of a program is measured
based on the amount of computer memory and time needed torun a
program.

The two approaches which are used to measure the performance of the program are:

1 Analytical method is called the Performance Analysis.
2. Experimental method is called the Performance Measurement.

SPACE COMPLEXITY

Space complexity: The Space complexity of a program is defined as
the amount of memory it needs to run to completion.

As said above the space complexity isone of the factor which accounts
for the performance of the program. The space complexity can be measured
using experimental method, which is done by running the program and then
measuring the actual space occupied by the program during execution. But this
is done very rarely. We estimate the space complexity of the program before
running the program.

Space complexity is the sum of the followingcomponents:
0] Instruction space:

The program which is written by the user is the source program. When
this program is compiled, acompiled version of the program is generated. For
executing the program an executable version of the programis generated.
The space occupied by these three when the programisunder execution, will
account for the instruction space.

(i Data space:

The space needed by the constants, simple variables, arrays, structur
es and other data structure swill account for the data space.

The Data space depends on the following factors:

v Structure size — It is the sum of the size of component
variables of the structure.

v Array size — Total size of the array is the product of the size
of the data type and the number of array locations.

(iii) Environment stack space:

The Environment stack space is used for saving information needed to
resume execution of partially completed functions. That is whenever the
control of the program is transferred from one function to another during a
function call, then the values of the local variable of that function and return
address are stored in the environment stack. This information is retrieved when
the control comes back to the same function.

The environment stack space depends on the following factors:

v Return address
v Values of all local variables and formal param eters.

The Total space occupied by the program during the execution ofthe
program is the sum of the fixed space and the variable space.

0] Fixed space - The space occupied by the instruction space, simple
variables and constants.

(i Variable space — The dynamically allocated space to the various
data structure sand the environment stack space varies according to the
input from the user.

Space complexity S(P) =c+ Sy

¢ a Fixed space or constant space S p
a Variable space

We will be interest ed in estimating only the variable space because that
is the one which varies according to the user input.
TIME COMPLEXITY

Time complexity: Time complexity of the program is defined as the
amount of computer time it needs to run to completion.

The time complexity can be measure d, by measuring the time taken
by the program when it is executed. This is an experiment al method. But this
is done very rarely. We always try to estimate the time consumed by the program
even before itis run for the first time.

The time complexity of the program depends on the following factors:

v Compiler used —some compilers produce optimized code which
consumes less time to get executed.

v Compiler options —The optimization options can be set in the options
of the compiler.

v Target computer — The speed of the compute r or the number of
instructions executed per second differs from one computer to
another.

The total time taken for the execution of the program is the sum of the
compilation time and the execution time.

0] Compiletime — The time taken for the compilation of the program
to produce the intermediate object code or the compiler version of
the program. The compilation time is taken only once as it is enough
if the program is compiled once. If optimized code is to be generat
ed, then the compilation time will be higher.

(in Run time or Execution time - The time taken for the execution
of the program. The optimized code will take less time to get
executed.

Time complexity T(P) =c+ T,

c is Compile time
T, is Run time or execution time

We will be interested in estimating only the execution time as this is the
one which varies according to the user input.

Estimating the Execution time:

Program step: Program step is a meaningful segment of a program which
is independent of instance characteristics. Instance
characteristics are the variables whose values are decided by the user input
at that instant of time.

Steps in estimating the execution time of program:

0] Identify one or more key operations and determine the number of times
these are perform ed. That is find out how many key operations are
present inside a loop and how many times that loop is executed.

(in Determine the total number of steps executed by the progra m.

The time complexity will be proportional to the sum of the above two.

ASYMPTOTIC NOTATIONS

Asymptotic notations — Asymptotic notations are the notations used to
describe the behavior of the time or space complexity.

Let us represent the time complexity and the space complexity using the common function

f(n).
The various asymptotic notations are:

@ O (Big Oh notation)

(i) £ (Omega notation)

(D] © (Theta notation)

(V) o (Little Oh notation)
O - Big Oh notation

The big Oh notation provides an upper bound for the function f(n).

The function f(n) = O(g(n)) if and only if there exists positive constants
cand nosuch that f(n) <cg(n) forall n>no.

Examples:
1.f(nN)=3n+2
Let us take g(n) =n
c = 4
No = 2

Let us check the above condition

3n+1 <4n foralln>2

The condition is satisfied. Hence f(n) = O(n).
2.f(nN) =10n2+4n + 2
Let us take g(n) =n?2
c=11
No =6
Let us check the above condition

10n2+4n+2 <1ln foralln>6

The condition is satisfied. Hence f(n) = O(n 2).
Q2 - Omega notation

The Q notation gives the lower bound for the function f(n).

The function f(n) = Q(g(n)g if and only if there exists positive constants
cand nosuch that f(n) >cg(n) forall n>no.

Examples:
1.f(n)=3n+2

Let us take g(n) =n

Let us check the above condition

3n+1 23N foralln>0

The condition is satisfied. Hence f(n) = Q(n).
2.f(n) =10n2+4n + 2
Let us take g(n) =n?
c =10
no =20
Let us check the above condition

10n2+4n+2 >10n foralln>0

The condition is satisfied. Hence f(n) = Q(n?2).

8 — Theta notation

The theta notation is used when the function f(n) can be bounded by both
from above and below the same function g(n).

f(n) = 6(g(n)) if and only if there exists some positive constants ¢ 1 and ¢ 2
and n o, such that c 1g(n) < f(n) < c 2g(n) for all n > n 0.

We have seen in the previous two cases,
3n+2=0(n) and 3n + 2 = Q(n)

Hence we can write 3n + 2 = 8(n)

0- Little Oh notation

’ f(n) = o(g(n)) if and only if f(n) = O(g(n)) and f(n) # Q(g(n))

For example,

3n +2=0(n?) but 3n+2 #R(n?)

Therefore it can be written as 3n + 2 = o(n 2)

SEARCHING AND SORTING

Searching is used to find the location where an element is available. There are two types of search
techniques. They are:
1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is a way in which
the elements are organized systematically for some purpose. For example, a dictionary in which words
are arranged in alphabetical order and telephone director in which the subscriber names are listed in
alphabetical order. There are many sorting techniques out of which we study the following.

Bubble sort

Quick sort

Selection sort and

W DN PE

Heap sort

LINEAR SEARCH
This is the simplest of all searching techniques. In this technique, an ordered or unordered list will be
searched one by one from the beginning until the desired element is found. If the desired element is
found in the list then the search is successful otherwise unsuccessful.
Suppose there are ‘n’ elements organized sequentially on a List. The number of comparisons required
to retrieve an element from the list, purely depends on where the element is stored in the list. If it is the
first element, one comparison will do; if it is second element two comparisons are necessary and so
on. On an average you need [(n+1)/2] comparison’s to search an element. If search is not successful,
you would need 'n’ comparisons.
The time complexity of linear search is O(n).
Algorithm:

Let array a[n] stores n elements. Determine whether element ‘X’ is present or not.

linsrch(a[n], x)

{
index = 0;
flag = O;
while (index < n) do
{
if (x == a[index])
flag = 1;
break;
}
index ++;
}
if(flag == 1)
printf(‘Data found at %d position®, index);
else
printf(“data not found”);
}

Example 1:
Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4,7, 9, 20

If we are searching for: 45, we’ll look at 1 element before success

39, we'll look at 2 elements before success
8, we’ll look at 3 elements before success
54, we'll look at 4 elements before success
77, we'll look at 5 elements before success
38 we’ll look at 6 elements before success
24, we'll look at 7 elements before success
16, we'll look at 8 elements before success
4, we'll look at 9 elements before success
7, we'll look at 10 elements before success
9, we'll look at 11 elements before success
20, we'll look at 12 elements before success

For any element not in the list, we’'ll look at 12 elements before failure

Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8
Elements -15 -6 0 7 9 23 54 82 | 101

Searching different elements is as follows:

1. Searching for x =7 Search successful, data found at 3 position
2. Searching for x = 82 Search successful, data found at 7" position
3. Searching for x = 42 Search un-successful, data notfound

A non-recursive program for Linear Search:

include <stdio.h>
include <conio.h>

main()
{
int number[25], n, data, i, flag = 0;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements:);
for(i=0;i < n; i++)
scanf("%d", &numberfi]);
printf("\n Enter the element to be Searched: ");
scanf("%d", &data);
for(i=0;i<n;i++)

{
if(humber[i] == data)
flag = 1;
break;
}
}
if(flag == 1)
printf("\n Data found at location: %d", i+1);
else

printf("\n Data not found ");

A Recursive program for linear search:

include <stdio.h>
include <conio.h>

void linear_search(int a[], int data, int position, int n)
{ o

int mid;

if(position < n)

if(a[position] == data)

printf("\n Data Found at %d ", position);
else

linear_search(a, data, position + 1, n);

else

printf("\n Data not found");
}

void main()

{

int a[25], i, n, data;

clrscr();

printf("\n Enter the number of elements: ");
scanf("%d", &n);

printf("\n Enter the elements: ");
for(i=0;i<n;i++)

{
}

printf("\n Enter the element to be seached: ");
scanf("%d", &data);

linear_search(a, data, 0, n);

getch();

scanf("%d", &ali]);

BINARY SEARCH

If we have ‘n’ records which have been ordered by keys so that x; < x,< ... < x,.When we are given a
element X', binary search is used to find the corresponding element from the list. In case X’ is present,
we have to determine a value fj’ such that a[j] = x (successful search). If ‘X’ is not in the list then j is to
set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and compare ‘X’ with
a[mid]. If x = aJmid] then the desired record has been found. If x < a[mid] then X’ must be in
that portion of the file that precedes a[mid]. Similarly, if a[mid] > x, then further search is only necessary
in that part of the file which follows a[mid]. If we use recursive procedure of finding the middle key a[mid]
of the un-searched portion of a file, then every un-successful comparison of ‘x’ with a[mid] will eliminate
roughly half the un-searched portion from consideration.

Since the array size is roughly halved after each comparison between ‘x’ and a[mid], and since an array

of length ‘n’ can be halved only about log.n times before reaching a trivial length, the worst case
complexity of Binary search is about log;n

Algorithm:

Let array a[n] of elements in increasing order, n @ 0, determine whether ‘X’ is present, and if so, set j
such that x = a[j] else return 0.

binsrch(a[], n, x)

low = 1; high = n;
while (low < high) do
{
mid = & (low + high)/2
if (x < a[mid])
high = mid — 1;

else if (x > a[mid])
low = mid + 1;
else return mid;
}

return O;
}
low and high are integer variables such that each time through the loop either ‘X’ is found or low is
increased by at least one or high is decreased by at least one. Thus we have two sequences of integers

approaching each other and eventually low will become greater than high causing termination in a finite
number of steps if X’ is not present.

Example 1:

Let us illustrate binary search on the following 12 elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12
Elements 4 7 8 9 16 20 24 38 39 45 54 77
If we are searching for x = 4: (This needs 3 comparisons)
low =1, high = 12, mid = 13/2 = 6, check 20
low =1, high =5, mid = 6/2 = 3, check 8
low =1, high = 2, mid = 3/2 = 1, check 4, found

If we are searching for x = 7: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20

low =1, high =5, mid = 6/2 = 3, check 8

low = 1, high =2, mid = 3/2 = 1, check 4

low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)
low =1, high = 12, mid = 13/2 = 6, check 20
low =1, high =5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20

low = 1, high =5, mid = 6/2 = 3, check 8

low = 4, high =5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20

low =1, high =5, mid = 6/2 = 3, check 8

low = 4, high =5, mid = 9/2 = 4, check 9

low =5, high =5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, found

If we are searching for x = 24: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38

10

low = 7, high = 7, mid = 14/2 = 7, check 24, found

If we are searching for x = 38: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20

low = 7, high = 12, mid = 19/2 = 9, check 39

low = 7, high = 10, mid = 17/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low =7, high =12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)
low =1, high =12, mid = 13/2 = 6, check 20

low =7, high =12, mid = 19/2 = 9, check 39

low =10, high = 12, mid = 22/2 = 11, check 54

low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)
low =1, high = 12, mid = 13/2 = 6, check 20

low =7, high = 12, mid = 19/2 = 9, check 39

low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20

low = 7, high = 12, mid = 19/2 = 9, check 39

low = 10, high = 12, mid = 22/2 = 11, check 54

low = 12, high = 12, mid = 24/2 = 12, check 77, found

The number of comparisons necessary by search element:

20 — requires 1 comparison; 8 and 39 — requires 2 comparisons;
4,9, 38, 54 — requires 3 comparisons; and 7, 16, 24, 45, 77 — requires 4 comparisons

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding 37/12 or
approximately 3.08 comparisons per successful search on the average.
Example 2:

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9
Elements -15 -6 0 7 9 23 54 82 | 101

The number of comparisons required for searching different elements is as follows:
1. If we are searching for x = 101: (Number of comparisons = 4)

low high mid

1 9 5
6 9 7
8 9 8
9 9 9
found

2. Searching for x = 82: (Number of comparisons = 3)

3. Searching for x = 42: (Number of comparisons = 4)

11

low high mid

1 9 5
6 9 7
5 6 5
6 6 6
7 6 not found

4. Searching for x = -14: (Number of comparisons = 3)

low high mid
1 9 5

4 4 2

1 1 1

2 1 not found

Continuing in this manner the number of element comparisons needed to find each of nine elements
is:

Index 1 2 3 4 5 6 7 8 9
Elements -15 | -6 0 7 9 23 | 54 | 82 | 101
Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons needed to find
all nine items and dividing by 9, yielding 25/9 or approximately 2.77 comparisons per successful search
on the average.

There are ten possible ways that an un-successful search may terminate depending upon the value of
X.

If x <a(l), a(l) <x<a(2), a(2) <x<a(3), a(d) < x < a(6), a(6) < x < a(7) or a(7) < x < a(8) the algorithm
requires 3 element comparisons to determine that x’ is not present. For all of the remaining possibilities
BINSRCH requires 4 element comparisons. Thus the average number of element comparisons for an
unsuccessful search is:

(3+3+3+4+4+3+3+3+4+4)/10=34/10=3.4

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an unsuccessful search
is O(log n).
A non-recursive program for binary search:

include <stdio.h>
include <conio.h>

main()
{
int number[25], n, data, i, flag = 0, low, high, mid;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i=0;i<n;i++)
scanf("%d", &numberfi]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
low = 0; high = n-1,
while(low <= high)
{
mid = (low + high)/2;
if(humber[mid] == data)

12

flag = 1;
break;
}
else
{
if(data < number[mid])
high = mid - 1;
else
low = mid + 1;
}
}
if(flag == 1)
printf("\n Data found at location: %d", mid + 1);
else

printf("\n Data Not Found ");

A recursive program for binary search:

include <stdio.h>
include <conio.h>

void bin_search(int a[], int data, int low, int high)

{
int mid ;
if(low <= high)
mid = (low + high)/2;
if(@a[mid] == data)
printf("\n Element found at location: %d ", mid + 1);
else
if(data < a[mid])
bin_search(a, data, low, mid-1);
else
bin_search(a, data, mid+1, high);
}
}
else
printf("\n Element not found");
}
void main()
{

13

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order:
for(i = 0; i< n;i++)
scanf("%d", &ali]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
bin_search(a, data, 0, n-1);
getch();

~—

Bubble Sort:

The bubble sort is easy to understand and program. The basic idea of bubble sort is to pass through
the file sequentially several times. In each pass, we compare each element in the file with
itsuccessor i.e., X[i] with X[i+1] and interchange two element when they are not in proper order. We
will illustrate this sorting technique by taking a specific example. Bubble sort is also called as
exchange sort.

Consider the array x[n] which is stored in memory as shown below:

X[0] | X[| X[2] | X[| X4 |X[3]
33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the array 5 times
as described below:

Pass 1: (first element is compared with all other elements)

We compare X]i] and X[i+1] fori=0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] if X[i] > X[i+1]. The
process is shown below:

x0] | x@1 | x21 | xi31 | x4 | xi51 | Remarks
33 44 22 11 66 55
22 44
11 44
44 66
55 66
33 22 11 44 55 66

The biggest number 66 is moved to (bubbled up) the right most position in the array.
Pass 2: (second element is compared)
We repeat the same process, but this time we don’t include X[5] into our comparisons. i.e., we compare

X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if X[i] > X[i+1]. The process is shown
below:

| xi01 | x| x21 | xi31 | x@4] | Remarks |

14

33
22

22

22
33
11

11

11

33
33

33

44 55

44
44 55
44 55

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared)

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, we move the
third biggest number 44 to X[3].

X[0] X[1] X[2] X[3] Remarks
22 11 33 44
11 22
22 33
33 44
11 22 33 44

15

Pass 4: (fourth element is compared)

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth biggest number
33 to X[2].

X[0] X[1] X[2] Remarks
11 22 33
11 22
22 33

Pass 5: (fifth element is compared)

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the fifth biggest number
22 to X[1]. At this time, we will have the smallest number 11 in X[0]. Thus, we see that we can sort the
array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.

Program for Bubble Sort:

#include <stdio.h>
#include <conio.h>

void bubblesort(int x[],int n)

{
inti, j, t;
for (i=0;i<n;i++)
{
for (j = 0; j <n-i; j++)
if (x[j] > x[j+1])
{
t=x[l;
X[i] = x[j+1];
X[+1] =t;
}
}
}
}
main()
{
inti, n, x[25];
clrscr();

printf("\n Enter the number of elements: ");
scanf("%d",&n);
printf("\n Enter Data:");
for(=0;i<n;i++)

scanf("%d", &x][i]);
bubblesort(x,n);
printf ("\nArray Elements after sorting: ");
for (iI=0;i<n;i++)

16

printf ("%5d", x[i]);

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) comparisons on
each pass. Thus the total number of comparisons is (n-1) * (n-1) = n>— 2n + 1, which is O(n?). Therefore
bubble sort is very inefficient when there are more elements to sorting.

Selection Sort:

Now, you will learn another sorting technique, which is more efficient than bubble sort and the insertion
sort. This sort, as you will see, will not require no more than n-1 interchanges. The sort we are talking
about is selection sort.

Suppose X is an array of size n stored in memory. The selection sort algorithm first selects the smallest
element in the array x and place it at array position 0; then it selects the next smallest element in the
array x and place it at array position 1. It simply continues this procedure until it places the biggest
element in the last position of the array. We will now present to you an algorithm for selection sort.

The array is passed through (n-1) times and the smallest element is placed in its respective position in
the array as detailed below:

Pass 1:
Find the location j of the smallest element in the array x [0], x[1],......... x[n-1], and then interchange X[j]
with x[0]. Then x[0] is sorted.

Pass 2:
Leave the first element and find the location j of the smallest element in the sub-array x[1], X[2],
X[n-1], and then interchange x[1] with x[j]. Then x[0], X[1] are sorted.

Pass 3:
Leave the first two elements and find the location j of the smallest element in the sub-array x[2], x[3], .
... X[n-1], and then interchange x[2] with x[j]. Then x[0], x[1], X[2] are sorted.

Pass (n-1):
Find the location j of the smaller of the elements x[n-2] and x[n-1], and then interchange x[j] and x[n-
2]. Then x[0], x[1], X[n-2] are sorted. Of course, during this pass x[n-1] will be the biggest element

and so the entire array is sorted.

Time Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort requires exclusive
swapping. In spite of superiority of the selection sort over bubble sort and the insertion sort (there is
significant decrease in run time), its efficiency is also O(n?) for n data items.

Example:

Let us consider the following example with 9 elements to analyze selection Sort:

1 2 3 4 5 6 7 8 9 Remarks

65 70 75 80 50 60 55 85 45 find the first smallest element

! j swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest element

i j swap a[i] and a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest element

| i swap a[i] and a[j]

17

45 50 55 80 70 60 75 85 65 Find the fourth smallest element
I j swap a[i] and a[j]
45 50 55 60 70 80 75 85 65 Find the fifth smallest element
i j swap a[i] and a[j]
45 50 55 60 65 80 75 85 70 Find the sixth smallest element
i j swap a[i] and a[j]
45 50 55 60 65 70 75 85 80 Find the seventh smallest element
ij swap a[i] and a[j]
45 50 55 60 65 70 75 85 80 Find the eighth smallest element
i J swap a[i] and a[j]
45 50 55 60 65 70 75 80 85 The outer loop ends.

Non-recursive Program for selection sort:

include<stdio.h>
include<conio.h>

void selectionSort(int low, int high);

int a[25];

int main()

{

}

int num, i= 0;
clrscr();

printf("Enter the number of elements: ");

scanf("%d", &nhum);
printf("\nEnter the elements:\n");
for(i=0; i < num; i++)

scanf("%d", &ali]);
selectionSort(0, num - 1);

printf("\nThe elements after sorting are: ");

for(i=0; i< num; i++)
printf("%d
return O;

* afl]);

void selectionSort(int low, int high)

{

int i=0, j=0, temp=0, minindex;
for(i=low; i <= high; i++)

{
minindex = i;
for(j=i+1; j <= high; j++)
if(a[j] < a[minindex])
minindex = j;
temp = ali];
a[fi] = a[minindex];
a[minindex] = temp;
}

Recursive Program for selection sort:

#include <stdio.h>

18

#include<conio.h>
int x[6] = {77, 33, 44, 11, 66};
selectionSort(int);

main()
{ . .
inti, n=0;
clrscr();
printf (" Array Elements before sorting: ");
for (i=0; i<5; i++)
printf (“%d ", X[i]);
selectionSort(n); /* call selection sort */
printf ("\n Array Elements after sorting:);
for (i=0; i<5; i++)
printf ("%d ", x[i]);

selectionSort(int n)

{
int k, p, temp, min;
if (n==4)
return (-1);
min = x[n];
p=n
for (k = n+1; k<5; k++)
if (X[K] <min)
{
min = x[k];
p=Kk
}
}
temp = x[n]; [* interchange x[n] and x[p] */
x[n] = X[p];
X[p] = temp;
n++ ;
selectionSort(n);
}

INSERTION SORT

The main idea behind the insertion sort is to insert the i element
in its correct place in the i pass. Suppose an array A with nelements
A[l], A[2],...A[N] is in memory. The insertion sort algorithm scans A
from A[1] to A[N], inserting each element A[K] into its proper position in
the previously sorted subarray A[1], A[2],..A[K-1].

Principl e: In Insertion Sort algorithm, each element A[K] in the list is
compared with all the elements before it (A[1] to A[K-1]). If any element
A[l] is found to be greater than A[K] then A[K] is inserted in the place of
A[l}. This process is repeated till all the elements are sorted.

Algorith m:

19

Procedure INSERTION SORT(A, N)

/I A is the array containing the list of data items
/I N is the number of data items in the list

Last BN -1

Repeat For Pass =1to Last Step 1
Repeat For 1= 0 to Pass —1 Step 1
If A[Pass] < AJl]
Then
Temp B A[Pass]
Repeat For J=Pass -1to | Step -1
A[J+1]RA[J]
End Repeat
A[l] B Temp
End If
End Repeat
End Repeat

End INSERTIONSORT

In Insertion Sort algorithm, Last is made to point to the last element
in the list and Pass is made to point to the second element in the list. In every
pass the Pass is incremented to point to the next element and is continued
till it reaches the last element. During each pass A[Pass] is compare d all
elements before it. If A[Pass] is lesser than A[l] in the list, then A[Pass] is
inserted in position I. Finally, asorted list is obtained.

For performing the insertion operation, avariable temp is used to safely
store A[Pass] in it and then shift right elements starting from A[l] to A[Pass-
1].

Exampl e :
N =10 & Number of elements in the list

L a Last
P a Pass

42 | 23 74 11 65 58 94 36 99 87
P=1 A[P] < A[0O] a Insert A[P]at O L=9

23 42 74 11 65 58 94 36 99 87
P=2 L=9
A[P] is greater than all elements before it. Hence No Change

20

23 | 42 74 11 65 58 94 36 99 87
P=3 A[P] <A[0] a Insert A[P]at0L=9
11 23 42 74 65 58 94 36 99 87
P=4 L=9
A[P] < A[3] a Insert A[P] at 3
11 23 42 65 74 58 94 36 99 87
P=5 L=9
A[P] < A[3] a Insert A[P] at 3
11 23 42 58 65 74 94 36 99 87
P=6 L=9

A[P] is greater than all elements before it.

Hence No Change

11 | 23 42 58 65 74 94 36 99 87
P=7 L=9
A[P] < A[2] a Insert A[P] at 2
11 | 23 36 42 58 65 74 94 99 87
P=8 L=9

A[P] is greater than all elements before it.

Hence No Change

11 23 36 42 58 65 74 94 99 87
P,L=9
A[P] < A[7] a Insert A[P] at 7
Sorted List:
11 23 36 42 58 65 74 87 94 99
Progra m:

void array::sort()

{

int temp, last=count- 1;
for (int pass =1;pass<=last;pass++)

{

for (inti= 0; i< pass; i+ +)

{

21

if (a[pass] <a[i])

{
temp=a[pass];
for (int j=pass- 1;j>=i;j--)
afj+1]=aljl;
afil=temp;
}

In the sort function, the integer variable last is used to point to the last
element in the list. The first pass starts with the variable pass pointing to
the second element and continues till pass reaches the last element. In each
pass, a[pass] is compared with all the elements before itand if a[pass] is
lesser than a[i], then it is inserted in position i. Before inserting it, the elements
a[i] to a[pass- 1] are shifted right using a temporary variable.

Advantages:
1 Sorts the list faster when the list has less number of elements.
2 Efficient in cases where anew element has to be inserted intoa
sorted list.

Disadvantages :

1 Very slow for large values of n.
2 Poor performance if the list is in almost reverse order.

22

Quick Sort

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the first more
efficient sorting algorithms. It is an example of a class of algorithms that work by what is usually called
“divide and conquer”.

In essence, the quick sort algorithm partitions the original array by rearranging it into two groups. The
first group contains those elements less than some arbitrary chosen value taken from the set, and the
second group contains those elements greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged in this way with
respect to the pivot, the very same patrtitioning is recursively applied to each of the two subsets. When
all the subsets have been partitioned and rearranged, the original array is sorted.

The function partition() makes use of two pointers up and down which are moved toward each other in
the following fashion:

1. Repeatedly increase the pointer up by one position until afup] > =pivot.

2. Repeatedly decrease the pointer down by one position until a[down] <=pivot.

3. If down > up, interchange a[down] with aJup]

4, Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer

crosses ‘down’ pointer, the position for pivot is found and place pivot element in ‘down’
pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort function sorts all
elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will be satisfied
only when the array is completely sorted.

2. Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it calls the partition
function to find the proper position j of the element x[low] i.e. pivot. Then we will have two
sub-arrays x[low], x[low+1], X[j-1] and x[j+1], x[j*+2], . . .x[high].

3. It calls itself recursively to sort the left sub-array Xx[low], x[low+1], X[j-1] between

positions low and j-1 (where j is returned by the partition function).
4, It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . .x[high] between positions
j*+1 and high.
Algorithm

Sorts the elements a[p]---,a[q] which reside in the global array a[n] into ascending order. The a[n+1]
is considered to be defined and must be greater than all elements in a[n]; a[n + 1]

qguicksort (p, Q)
{
if (p<q)then
{
call j = PARTITION(a, p, g+1); //jis the position of the partitioning element

call quicksort(p, j — 1);
call quicksort(j + 1, qQ);

}
}
partition(a, m, p)
{
v = a[m]; up = m; down = p; /Il a[m] is the partition element
do
{

23

repeat
up =up + 1,
until (afup] > v);

repeat
down = down — 1;
until (a[down] < v);
if (up < down) then call interchange(a, up, down);
} while (up > down);

a[m] = a[down];
a[down] = v;
return (down);

}
interchange(a, up, down)
{
p = afup];
afup] = a[down];
a[down] = p;
}

Time complexity:

There are several choices for choosing the ‘pivot’ element through which we can improve the efficiency
of quick sort. For example, one may choose the ‘pivot’ element as median or mean or middle element.
Also, a non-recursive method could be developed for execution efficiency. When these improvements
are made, experiments indicate the fact that the total number of comparisons for quick sort is of O(n

log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of an element
larger than pivot. Move the ‘down’ pointer from right to left in search of an element smaller than pivot.
If such elements are found, the elements are swapped. This process continues till the ‘up’ pointer
crosses the ‘down’ pointer. If ‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and
interchange pivot and element at ‘down’ position.

Let us consider the following example with 13 elements to analyze quick sort:

1

2 3 4 5 6 7 8 9 10 11 12 13 Remarks
38 08 16 06 79 57 24 56 02 58 04 70 45
. dow swap up
pivot up n & down
04 79
dow swap up
up n & down
02 57
dow u
n p
swap
(24 08 16 06 04 02) 38 (56 57 58 79 70 45) pivot &
down
swap
pivot dow pivot &
n
down
(02 08 16 06 04) 24
pivot, | up swap
down pivot &

24

down

02 (08 16 06 04)
. dow swap up
pivot | Up n & down
04 16
dow
n Up
swap
(06 04) 08 pivot &
(16) down
pivot
dow Up
n
swap
(04) 06 pivot &
down
04
pivot
dow
n
16
pivot
dow
n
(02 04 06 08 16 24) 38
(56 57 58 79 70 45)
. dow | swap up
pivot | up n & down
45 57
dow
n up
swap
(45) 56 (58 79 70 57) pivot &
down
45
pivot swap
: pivot &
dow down
n
(58 79 57) swap up
) 70 dow
pivot | up n & down
57 79
dow u
n p
swap
(57) 58 (70 79) pivot &
down
57
pivot
dow
n
(70 79)
pivot swap
' up pivot &
dcr)]w down
70
79
pivot
dow

25

45 | 56

57

58

70

79)

02 04 06 08 16 24 38 45 56

57

58

70

79

Program for Quick Sort (Recursive version):

include<stdio.h>
#include<conio.h>

void quicksort(int, int);
int partition(int, int);
void interchange(int, int);

int array[25];

int main()
{
int num, i = 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);
printf("Enter the elements: ");
for(i=0; i < num; i++)
scanf("%d", &array[i]);
quicksort(0, num -1);
printf("\nThe elements after sorting are: ");
for(i=0; i < num; i++)
printf("%d ", arrayl[i]);
return O;

void quicksort(int low, int high)

{
int pivotpos;
if(low < high)
pivotpos = partition(low, high + 1);
quicksort(low, pivotpos - 1);
quicksort(pivotpos + 1, high);
}
}
int partition(int low, int high)
{

int pivot = array[low];
int up = low, down = high;

do

{
do

up =up + 1,
while(array[up] < pivot);

do
down = down - 1;
while(array[down] > pivot);

if(up < down)
interchange(up, down);

twhile(up < down);

26

array[low] = array[down];
array[down] = pivot;
return down;

}
void interchange(int i, int j)
{
int temp;
temp = array[i];
array[i] = arrayf[jJ;
array[j] = temp;
}

Heap and Heap Sort

Heap is a data structure, which permits one to insert elements into a set and also to find the largest
element efficiently. A data structure, which provides these two operations, is called a priority queue.

Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node is greater than or
equal to those in its children.

A min heap is an almost complete binary tree such that the value of each node is less than or equal to
those in its children.

Representation of Heap Tree:

Since heap is a complete binary tree, a heap tree can be efficiently represented using one
dimensional array. This provides a very convenient way of figuring out where children belong to.

v The root of the tree is in location 1.

+ The left child of an element stored at location i can be found in location 2*i.

v The right child of an element stored at location i can be found in location 2*i+1.
v The parent of an element stored at location i can be found at locationfloor(i/2).

The elements of the array can be thought of as lying in a tree structure. A heap tree represented
using a single array looks as follows:

X[A] | X[2] | X[3] | X[4] | X[5] | X[6] | X[7] | X[8]
65 | 45 | 60 | 40 | 25 | 50 | 55 | 30

27

x[8] HeapTree

Operations on heap tree:

The major operations required to be performed on a heap tree:

1. Insertion,
2. Deletion and
3. Merging.

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the properties of heap tree.
Using repeated insertions of data, starting from an empty heap tree, one can build up a heap tree.

Let us consider the heap (max) tree. The principle of insertion is that, first we have to adjoin the data
in the complete binary tree. Next, we have to compare it with the data in its parent; if the value is greater
than that at parent then interchange the values. This will continue between two nodes on path from the
newly inserted node to the root node till we get a parent whose value is greater than its child or we
reached the root.

For illustration, 35 is added as the right child of 80. Its value is compared with its parent’s value, and to
be a max heap, parent’s value greater than child’s value is satisfied, hence interchange as well as
further comparisons are no more required.

As another illustration, let us consider the case of insertion 90 into the resultant heap tree. First, 90 will
be added as left child of 40, when 90 is compared with 40 it requires interchange. Next, 90 is compared
with 80, another interchange takes place. Now, our process stops here, as 90 is now in root node. The
path on which these comparisons and interchanges have taken places are shown by dashed line.
The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)

{
/linserts the value in a[n] into the heap which is stored at a[1] to a[n-1]
integer i, n;
i=n;
item = a[n] ;
while ((i> 1) and (a[Bi/2 B] < item) do
alil=a[mi/20]; /l move the parent down
i=0i20;
}
afi] = item ;
return true ;
}
Example:

Form a heap by using the above algorithm for the given data 40, 80, 35, 90, 45, 50, 70.

28

Insert 40:

Insert 80:

g
G &

29

3. Insert35:

4. Insert90:

- 90
= OD

40

5. Insert45:

6. Insert50:

adjust (a, i, n)
/I The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a single
heap, 1 <i<n. No node has an address greater than n or less than 1. //
{
j=2%*;
item = a[i] ;
while (j < n) do

30

f(<n)and(@a()<a(+1)thenjRj+1;
/I compare left and right child and let j be the larger child
if (item > a (j)) then break;

/I a position for item is found
els% 2.[lj /28] =alj] /I move the larger child up alevel
I=275

}
a[mj/2a]=item;

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 26 and this node
with data 26 is removed from the tree. Next 26 at root node is compared with its two child 45 and 63.
As 63 is greater, they are interchanged. Now, 26 is compared with its children, namely, 57 and 42, as
57 is greater, so they are interchanged. Now, 26 appears as the leave node, hence re- heap is
completed.

Deletingthe node with data99 After Deletionof nodewithdata99

HEAP SORT:

A heap sort algorithm works by first organizing the data to be sorted into a special type of binary tree
called a heap. Any kind of data can be sorted either in ascending order or in descending order using
heap tree. It does this with the following steps:

1. Build a heap tree with the given set of data.

2. a Remove the top most item (the largest) and replace it with the last
element in the heap.
b. Re-heapify the complete binary tree.
C. Place the deleted node in the output.

3. Continue step 2 until the heap tree is empty.

Algorithm:

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-decreasing order.
First transform the elements into a heap.

heapsort(a, n)

heapify(a, n);
fori=nto2by—-1do
{
temp = a[l];
a[i] = a[1];
a[l]=t;

adjust (a, 1, i—1);

31

}

heapify (a, n)
/IReadjust the elements in a[n] to form a heap.

{
}

adjust (a, i, n)
/I The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a single
heap, 1 <i<n. No node has an address greater than n or less than 1. //

fori B @n/2@to 1 by — 1 do adjust (a, i, n);

{ . .
1=2%,;
item = ali] ;
while (j < n) do
{
f(j<nand(a()<a(j+1)thenjRj+1;
/Il compare left and right child and let j be the larger child
if (item > a (j)) then break;
/I a position for item is found
_else2 a[gj/2e]=alj] / move the larger child up alevel
j=2%j
}
a[@j/2r]=item;
}

Time Complexity:

Each ‘n’ insertion operations takes O(log k), where ‘k’ is the number of elements in the heap at the
time.

Likewise, each of the ‘n’ remove operations also runs in time O(log k), where ‘K’ is the number of
elements in the heap at the time.

Since we always have k <n, each such operation runs in O(log n) time in the worst case.

Thus, for ‘n’ elements it takes O(n log n) time, so the priority queue sorting algorithm runs in O(n log
n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data using heap sort.
Solution:

First form a heap tree from the given set of data and then sort by repeated deletion operation:

32

33

1. Exchangeroot 90withthelast element 350fthe array andre-heapify

.

@ & 6o Lo @) G Go G
35
2. Exchangeroot 80 with the last element 50 of the array and re-heapify

70

/
-
it

‘ N

')

\ 071‘

T

90

—

5. Exchangeroot 45 with the last element 35 of the array and re-heapify

o

o

'45, |:> '45.
o \ - \\\
{50 (70,‘ {80 "90,' '\50) (70,‘ \80,, ‘90|
6. Exchangeroot 40 with the last element 35 of the array and re-heapify
35
40 T L : .
a5 (a5}) o, a5}
A AN AN
/.‘ \\ 7’ \\ /n‘ \\ /’ \\
\50; (7o) {80; (90; \50; (70} (80} 190

Program for Heap Sort:

Thesortedtree

34

include <stdio.h>
include <conio.h>

void adjust(int i, int n, int a[])

{ o
int j, item;
j=2*i;
item = ali];
while(j <= n)
{
if((< n) && (af] < afj+1]))
jt+;
if(item >= a[j])
break;
else
afj/2] = alj;
1=2%;
}
}
alj/2] = item;
}

void heapify(int n, int a[])

int i
for(i=n/2;i>0;i--)
adjust(i, n, a);

}
void heapsort(int n,int a[])
{
int temp, i;
heapify(n, a);
for(i=n;i>0;i-)
{
temp = a[i];
ali] = a[1];
a[l] = temp;
adjust(1,i- 1, a);
}
}
void main()
{
inti, n, a[20];
clrscr();
printf("\n How many element you want: ");
scanf("%d",&n);
printf("Enter %d elements: ",n);
for (i=1;i<=n;i++)
scanf("%d", &ali]);
heapsort(n, a);
printf("\n The sorted elements are: \n");
for (i=1;i<=n;i++)
printf("%5d",a[i]);
getch();
}

MERGE SORT

35

Principl e: The given list is divided into two roughly equal parts called the
left and the right subfiles. These subfiles are sorted using the algorithm

recursively and then the two subfiles are merged together to obtain the sorted
file.

Given asequenc eofnelements A[1],A[N], the general idea is to imagine
them split into two sets A[l1],...A[N/2] and A[(N/2) + 1],...A[N]. Each set is
individually sorted, and the resulting sorted sequences are merged to produce
asingle sorted sequenc e of N elements. Thus this sorting method follows
Divide and Conquer strategy.

Algorith m:

Proce d u r e MERGE(A, low, mid, high)
/I A'is the array containing the list of data items

I R low,JR mid+ 1, K Blow
While I < mid and J < high

If A[l] < A[J]
Then
Temp[K] BRA[I
IR |I?|'[1] L]
KR3RK+1
Else
Temp[K] BA[J
JR Jp+[1] L]
KRK+1
End If
End While
If 1 >mid
Then
While J < high
Temp[K] BA[J]
KRBRK+1
JRI+ 1
End While
Else
While | < mid
Temp[K] BAJI
K R BALL
IRI+1
End While
End If

Repeat for K = low to high step 1
A[K] BTemp[K]

End Repeat

End MERGE

36

Procedure MERGESORT (A, low, high)
/l A'is the array containing the list of data items

If low < high

Then
mid B (low + high)/ 2
MERGESORT (low, high)
MERGESORT(mid + 1, high)
MERGE(low, mid, high)

End If

End MERGESORT

The first algorithm MERGE can be applied on two sorted lists to merge
them. Initially, the index variable | points to low and J points to mid + 1.
A[l] is compare d with A[J] and if A[l] found to be lesser than A[J] then A[l]
isstored in a temporary array and | is incremented otherwise A[J] is stored in
the temporary array and J is incremented. This comparison is continued
until either 1 crosses mid or J crosses high. If I crosses the mid first then
that implies that all the elements in first listisaccommodated in the tempora-
ry array and hence the remaining elements in the second list can be put into
the temporary array as itis. IfJcrosses the high first then the remaining
elements of first list is put as itisinthe temporary array. After this process we
get a single sorted list. Since this method merges 2 lists at a time, this is
called 2-way merge sort.

Inthe MERGESORT algorithm, the given unsorted list is first split into
N number of lists, each list consisting of only 1 element. Then the MERGE
algorithm is applied for first 2 lists to get a single sorted list. Then the same
thing is done on the next two lists and so on. This process is continued till a
single sorted list is obtained.

Exampl e :
Let L & low, M a mid, H a high

i=0i=1 i=2i=31i=4i=5i=61=71=8i1=9

42 23 74 11 65 58 94 36 99 87

U M H

In each pass the mid value is calculated and based on that the list is split into
two. This is done recursively and at last N number of lists each having only
one element is produce das shown.

37

42 23 74 11 65 58 94 36 99 87

Now merging operation is called on first two lists to produce a single sorted
list, then the same thing is done on the next two lists and so on. Finally asingle
sorted list is obtained.

23 42 11 74 58 65 36 94 87 99

11 23 42 74 36 58 65 o4 g7 99

11 23 36 42 58 65 74 94 87 99

11 23 36 42 58 65 74 87 94 99

Progra m:

void array:: sort(int low, int high)

{
int mid;
if (low< high)
{
mid=(low+high)/2;
sort(low, mid);
sort(mid + 1, high);
merge(low, mid, high);
}
}

void array:: merg e(int low, int mid, int high)
{
int i=low, j= mid + 1, k=low, temp[MAX];

while (i< = mid && j<= high) if
(afi]<a[j])

temp[k++]=a[i++];

else
temp[k++]=a[j++];
if (i> mid)
while (j< = high)

temp[k++]=a[j++];
else
while (i< = mid)
temp[k++]=a[i++];

38

for (k=low; k< = high; k+ +)
a[k]=te m p[K];
¥

Advantages:

1 Very useful for sorting bigger lists.
2. Applicable for external sorting also.

Disadvantages:

1. Needs a temporary array every time, for storing the new sorted
list.

shell Sort

The shell sort , sometimes called the “diminishing increment sort,” improves
on the insertion sort by breaking the original list into a number of smaller
sublists, each of which is sorted using an insertion sort. The unique way that
these sublists are chosen is the key to the shell sort. Instead of breaking the
list into sublists of contiguous items, the shell sort uses an increment i,
sometimes called the gap , to create asublist by choosing all items that are i items
apart.

Example of shell Sort :Use Shell sort for the following array :18, 32, 12,5,
38, 30, 16, 2
0 1 2 3 = 5 6 7

o] (=] (2] (5] (o) (0] (1] (2]

Compare the elements at agap of 4. i.e 18 with 38 and so on and swap if first
number is greater than second.

oIoIoIIoIDI0I0

e T N T T N T T T T EuTETTTE

39

Compare the elements at a gap of 2 i.e 18 with 12 and so on.

0 1 2 3 - 5 6 7

L] (0] () (2] (0] (2] (] [5]]

e e e e e e e e e e e e

Now the gap is 1. So now use insertion sort to sort this array.

0 1 2 3 - 5 6 7

L] (2] (o) (o] (o] 5] () [

After insertion sort. The final array is sorted.

40

UNIT- 11
STACKS

The data structures seen so far, allows insertion and deletion of elements
at any place. But sometimes it is required to permit the addition and
deletion of elements only at one end that is either at the beginning or at the end.

Stacks: A stack is a data structure in which addition of new element or
deletion of an existing element always takes place at the same end. This
end is often known as top of stack. When an item is added to a stack, the
operation is called push, and when an item is removed from the stack the
operation is called pop. Stack is also called as Last- In- First- Out (LIFO)
list.

Operations on Stack:

There are two possible operations done on a stack. They are pop and
push operation.

v Push: Allows adding an element at the top of the stack.
v Pop: Allows removing an element from the top of the stack.

The Stack can be implemented using both arrays and linked lists. When
dynamic memory allocation is preferred we go for linked lists to implement the
stacks.

ARRAY IMPLEMENTATION OF THE STACK
Push operation:

Ifthe elements are added continuously to the stack using the push operation
then the stack grows at one end. Initially when the stack is empty the top =

-1. The top is a variable which indicates the position of the topmost element
in the stack.

Empty Stack Push(a) Push(d0) Fush(30)
top=2 —w o0
top=1—w 40 40
top=0 —» 50 50 50
top = -1

41

PUSH(x)

If top = MAX -1
Then
Print “Stack is full”
Return
Else
Top=top+1
Aftop] = x
End if
End PUSH()

Pop operation:

On deletion of elements the stack shrinks at the same end, as the
elements at the top get removed.

F'Dp” F'I:lp(:l pr()

Empty Stack

tnpz-] — 40

50 top=0—= 50

ltem=90 [tern=40 top = -1 ltem =A0

POP()

Iftop=-1
Then
Print “Stack 1s empty”
Return
Else
Item = A[top]
A[Top] =0
Top=top-1
Return item
End if
End POP()

If arrays are used for implementing the stacks, it would be very
easy to manage the stacks. However, the problem with an array is that
we are required to declare the size of the array before using itina
program.This means the size of the stack should be fixed. We can
declare the array with a maximum size large enough to manage a stack.
As result, the stack can grow or shrink within the space reserved for it.
The following program implements the stack using array.

Program:

42

// Stack and various operations on it

#include <iostream.h>
#include <conio.h>

const int MAX= 20 ;

class stack
{ -
private:
int aflMAX];
int top;
public:
stack();
void push(int x);
int pop();
void display();
b
stack::stack()
{
top=- 1;
¥
void stack:: push(int x)
{
if (top= = MAX-1)
{
cout<<"\nStack is fulll";
return;
}
else
{
top++ ;
aftop] = x;
}
¥
int stack::pop()
{
if (top==-1)
{

cout<<"\nStackisempty!;
return NULL,;

}

else

{
int item=aftop];
top- -;
return item;

43

}
¥
void stack::display()
{
int temp =top;
while (temp! =- 1)
cout<<"\n"<<a[temp--];
¥
void main()
{
clrscr();
stack s;
int n;
s.push(10);
s.push(20);
s.push(30);
s.push(40);
s.display();
n=s.pop();
cout<<"\nPopped item:"<<n;
n=s.pop();
cout<<"\nPoppeditem:"<<n;
s.display();
getch();
}
Output:
40
30
20
10

Popped item: 40
Popped item: 30
20
10

LINKED LIST IMPLEMENTATION OF STACK
Initially, when the stack is empty, top points to NULL. When an element
isadded using the push operation, top is made to point to the latest element
whichever is added.
Push operatio n:
Create a tempora ry node and store the value of x in the data part of

the node. Now make link part of temp point to Top and then top pointto
Temp. That will make the new node as the topmost element in the stack.

44

Push(10)

PushiB0) 10;3
Push(20) TP [0 [| Tem
Stack Empt Temp
s w2k
PUSH(X)

Info(temp) = x
Link(temp) = top
Top = temp

End PUSH()

Pop operation

The data in the topmost node of the stack is first stored

in avariable

called item. Then a temporary pointer is created to point to top. The top is now
safely moved to the next node below it inthe stack. Temp node is deleted and

the item isreturned.

Fa
L) = Delete Temp

Top

|

80

¢_1

20 (M

itern = 10

POP()

If Top = NULL

Then
Print “Stack is empty
Return

2

Else
Item = info(top)
Temp = top

45

Top = link(top)
Delete temp
Return item
End if
End POP()

The following progra m implements the stack using linked lists.

Progra m:

/Il Stack implement e d using linked list

#include <iostream.h>
#include <conio.h>

class stack
{
private:
struct node
{
int data;
node *link;
b
node *top;
public:
stack();
~stack();
void push(int x);
int pop();
void display();
b
stack::stack()
{
top= N ULL,;
¥
stack:: ~stack()
{
node *temp;
while (top!= N ULL)
{
temp =t o p- >link;
delete top;
top=temp;
¥
}
void stack:: push(int x)
{
node *temp;

46

temp =newnode;
temp- >dat a=x;
temp- >link =t o p;
top=temp;

}

int stack::pop()
{
if lop==NULL)
{
cout<<"\nStackisempty!,;
return NULL,;
}
node *temp=top;
int item=temp- >data;
top=temp- >link;
delete temp;
return item;

}

void stack::display()
{
node *temp =top;
while (temp! = N ULL)
{
cout<<"\n"<<temp- >data;
temp =temp- >link;

}

void main()
{

clrscr();

stack s;

int n;

s.push(10);

s.push(20);

s.push(30);

s.push(40);

s.display();

n=s.pop();

cout<<"\nPopped item:"<<n;

n=s.pop();

cout <<"\nPop ped item:"< <n;

s.display();
getch();

}

Output:

40

47

30
20
10
Popped item: 40
Popped item: 30
20
10

APPLICATION OF STACKS

Conversion of Infix Expression to Postfix Expression

The stacks are frequently used in evaluation of arithmetic expressions.
An arithmetic expression consists of operands and operators. The operands
can be numeric values or numeric variables. The operators used in an arithm
etic expression represent the operations like addition, subtraction,
multiplication, division and exponentiation.

The arithmetic expression expressed in its normal form is said to be
Infix notation, as shown:

A+B
The above expression in prefix form would be represented as follows:
+ AB

The same expression in postfix form would be represented as follows:
AB +

Hence the given expression ininfix form is first converted to postfix form
and then evaluate dto get the results.

The function to convert an expression from infix to postfix consists
following steps:

1 Every character of the expression string is scanned in a while loop until
the end of the expression isreached.
2 Following steps are performeddepending on the type of characterscanned.
(a) If the character scanned happens to be a space then that character
isskipped.
(b) If the character scanned isa digit or an alphabet, itisadded to
the target string pointed to by t.
(c) If the character scanned is a closing parenthesis then it isadded
to the stack by calling push() function.
(d) If the character scanned happens to be an operator, then firstly,
the topmost element from the stack is retrieved. Through awhile
loop, the priorities of the charact erscanned

48

and the character popped ‘opr’ are compare d. Then following
steps are performed as per the precedence rule.

L If‘opr’ has higher or same priority asthe characterscanned,
then opr is added to the target string.

i. If opr has lower precedence than the character scanned,
then the loop is terminated. Opr is pushed back to the
stack. Then, the charact erscanned is also added to the stack.

(e) If the character scanned happens to be an opening parenthesis,
then the operators present in the stack are retrieved through aloop.
The loop continues till it does not encounter a closing parenthesis.
The operators popped, are added to the target string pointed to by t.
2. Now the string pointed by t is the required postfix expression.

Progra m:

// Progra m to convert an Infix form to Postfix form

#include <iostream.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>

const int MAX=50 ;

class infix

{

private:

char target[MAX], stack] MAX]; char
*S, *t’

int top;
public:

infix();

void push(char c);

char pop();

void convert(cha r *str);
int priority (char c);

void show();
b
infix::infix()
{
top=- 1;

strcpy(targ et,"");
strcpy(stack,™); t=
target;

S="

49

¥

void infix::push(char c)

{
if (top==MAX-1)
cout<<"\nStackis full\n!";
else
{
top+ +;
stack[top] =c¢;
}
}

char infix::pop()

{
if (top==-1)
{
cout<<"\nStack is empty\n";
return -1;
}
else
{
char item=stack[top];
top- -;
return item;
}
}
void infix::convert(cha r *str)
{
S=str;
while(*s!="\0")
{
if (*s==""||*s=="\t")
S+ +;
continue;
}
if (isdigit(*s) || isalpha(*s))
{
while(isdigit(*s) || isalpha(* s))
{
*t:*s;
S+ +:
t++;
}
}
if (*s=="()
{
push(*s);

50

S+ +;

51

¥

char opr;
if(*s::'*'||*S::'+'||*s::'/'||*s::'%'||*5::'-'||*s::'/\')
{
if (top!=-1)
{
opr= pop();
while (priority(opr) >=priority(*s))
{
*t= opr;
+ +;
opr= pop();
}
push(opr);
push(*s);
}
else
push (*s);
S+ +;
}
if (s==")")
{
opr= pop();
while ((opr)!'="()
{
*t= opr,
t+ +;
opr= pop();
}
S+ +;
}
}
while (top!=- 1)
{
char opr= po p();
*t= opr;
t+ +;
}
*t=\0"
}
int infix::priority(char c)
{
if(c==""")
return 3,

if (c=="*"[|c=="1"[|[c=="%")

52

return 2;

53

else
{
if(c=="+"||c=="-")
return 1,
else
return 0;

¥

¥

void infix::show()

{

cout<<target;

¥

void main()

{
clrscr();
char expr[MAX], *resf]MAX];
infix q;
cout<<"\nEnteran expression in infix form: *; cin>
>expr;
g.convert(expr);
cout < <™\ n The postfix expression is: ";
g.show();
getch();

¥

Output:

Enter an expression in infix form: 5/ 2 - 5 Stack

is empty

The postfix expression is: 52 5 -

Evaluation of Expressionenter edin postfix form

The program takes the input expression in postfix form. This expression
is scanned character by character. If the charact er scanned is an operand,
then first it is converted to a digit form and then it is pushed onto the stack.
If the character scanned is a blank space, then itisskipped. If the character
scannedisan operator, then the top twoelements from the stack are retrieved.
An arithmetic operation is performed between the two operands. The type of
arithmetic operation depends on the operator scanned from the string s. The
result is then pushed back onto the stack. These steps are repeated as long
as the string sisnotexhausted. Finally the value in the stack is the required
result and is shown to the user.

54

Progra m:

/[Progra mto evaluate an expression entered in postfix form

#include <iostream.h>
#include <stdlib.h>
#include <math.h>#
include <ctype.h>#
include <conio.h>

const int MAX=50 ;

class postfix

{
private:
int stack[MAX];
int top, n;
char *s;
public:
postfix();
void push(int item);
int pop();
void calculate(char *str);
void show();
I
postfix:: postfix()
{
top=-1;
}
void postfix::push(int item)
{
if (top= = MAX-1)
cout<<endl<<"Stack is full';
else
{
top+ +;
stack[top] =item;
}
}
int postfix::pop()
{
if (fop==-1)
{

cout<<endl<<"Stack isempty";

55

return NULL;

}
int data=stack|[top];
top- -;
return data;
}
void postfix::calculate(cha r *str)
{
s=str;
intnl, n2, n3;
while (*s)
{
if(*s==""||*s=="\t")
S+ +;
continue;
}
if (isdigit(*s))
{
n=*s-"'0"
push(n);
}
else
{
nl=pop();
n2=pop();
switch(*s)
{
case '+
n3=n2+nl;
break;
case '-"
n3=n2-ni;
break;
case '/":
n3=n2/n1l;
break;
case '*':
n3=n2*nl;
break;
case '%"
n3=n2%n1l;
break;
case 'N':
n3 =pow(n2,nl);
break;
default:
cout<<"Unknown operator";
exit(1);
}
push(n 3);

56

}
S+ +;
¥
¥
void postfix::show()
{
n=pop();
cout<<"Resultis:"<<n;
¥
void main()
{
clrscr();
char expr[MAX];
cout <<"\nEnter postfix expression to be evaluated :";
cin>>expr;
postfix q ;
g.calculate(expr);
g.show();
getch();
¥
Output:
Enter postfix expression to be evaluated : 53 * 5 - Result is:
120

QUEUE

Queue: Queue isalinear data structure that permits insertion of new element
at one end and deletion of an element at the other end. The end at which
the deletion of an element take place is called front, and the end at which
insertion of a new element can take place is called rear. The deletion or
insertion of elements can take place only at the front or rear end of the list
respectively.

The first element that gets added into the queue is the first one to get
removed from the list. Hence, queue is also referred to as First- In- First- Out
list (FIFO). Queues can be represented using both arrays as well as linked
lists.

ARRAY IMPLEMENTATION OF QUEUE

If queue isimplement ed using arrays, the size of the array should be
fixed maximum allowing the queue to expand or shrink.

Operations on a Queue

There are two common operations one in a queue. They are addition
of an element to the queue and deletion of an element from the queue. Two
variables front and rear are used to point to the ends of the queue. The front
points to the front end of the queue where deletion takes place and rear
points to the rear end of the queue, where the

57

addition of elements takes place. Initially, when the queue is full, the
front and rear is equal to -1.

Add(x)

An element can be added to the queue only at the rear end of the queue.
Before adding an element in the queue, it is checked whether queue is full.
If the queue is full, then addition cannot take place. Otherwise, the element
is added to the end of the list at the rear side.

34 78 50 56 34 78 50 56 a7
t t f t
frant rear frant rear
ADDQ(x)
If rear = MAX -1
Then
Print “Queue is full”
Return
Else
Rear =rear + 1
Afrear] = x
If front = -1
Then
Front=0
End if
End if
End ADDQ()

Del()

The del() operation deletes the element from the front of the queue.
Before deleting and element, it is checked if the queue is empty. If not the
element pointed by front is deleted from the queue and front isnow made to
point to the next element in the queue.

34 78 an 56 87 78 o0 6 a7
t t t t
frant rear frant rear
DELQ()
If front = -1
Then
Print “Queue is Empty”
Return

58

Else
Item = A[front]
Affront] =0
If front = rear
Then
Front =rear = -1
Else
Front = front + 1
End if
Return item
End if
End DELQ()

Progra m:

/I Queues and various operations on it — Using arrays

#include <iostream.h>
#include <conio.h>

const int MAX= 10 ;

class queue
{ -
private:
int afMAX], front, rear;
public:
queue();
void addq(int x);
int delq();
void display();
b
queue::que ue()
{
front=rear=-1;
}
void queue:: addq(int x)
{
if (rear==MAX-1)
{
cout<<"Queue isfull™
return;
}
rear + +;
afrear] = x;
if (front==-1)
front=0;
}

int queue::delqg()

59

if (front==-1)

{
cout<<"Queueisempty!;
return NULL,;

}

int item=a[front];

a[front] =0;

if (front==rear)
front=rear=-1;

else
front + +;

return item;

}

void queue::display()
{
if (front==-1)
return;
for (inti=front; i<=rear; i+ +)
cout<<ali]<<"\t%

}

void main()
{
clrscr();
queue q;
g.addq(50);
q.addq(40);
q.addq(90);
q.display();
cout<<endl;
int i=q. delq();
cout<<endl:
cout<<i<<"deleted!";
cout<<endl;
q.display();
i=q. delq();
cout<<endl;
cout<<i<<" deleted!";
cout<<endl;
i=q. delq();
cout < < i< <"deleted!";
cout<<endl;

i=q. delq();

getch();

¥

Output:

60

50 40 90

50 deleted!

40 90

40 deleted!

90 deleted!
Queue is empty!

61

LINKED LISTS

Linked lists and arrays are similar since they both store collections of data.
One way to think about linked lists is to look at how arrays work and think
about alternat eapproaches.

Array is the most common data structure used to store collections of elements. Arrays are convenient
to declare and provide the easy syntax to access any element by its index number. Once the array is
set up, access to any element is convenient and fast.

The disadvantages of arrays are:

' The size of the array is fixed. Most often this size is specified at compile
time. This makes the programmers to allocate arrays, which seems
"large enough” than required.

' Inserting new elements at the front is potentially expensive because
existing elements need to be shifted over to make room.

' Deleting an element from an array is not possible.
Linked lists have their own strengths and weaknesses, but they happen to be strong where arrays are

weak. Generally array's allocates the memory for all its elements in one block whereas linked lists use
an entirely different strategy.

Linked lists allocate memory for each element separat ely and only when necessa ry.

Here is aquick review of the terminology and rules of pointers. The
linked list code will depend on the following functions:

malloc () is asystem function which allocates ablock of memory in the "heap”
and returns apointer to the new block. The prototype of malloc() and other
heap functions are in stdlib. h. malloc() returns NULL if it cannot fulfill the
request. It is defined by:

void *malloc (number_of bytes)

Since a void * is returned the C standard states that this pointer can be converted to any type. For
example,

char *cp;
cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the sizeof()
function to specify the number of bytes. For example,

int *ip;
ip = (int *) malloc (100*sizeof(int));

62

free() is the opposite of malloc(), which de-allocates memory. The argument to free() is a pointer to a
block of memory in the heap — a pointer which was obtained by a malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a block.

6l . Linked List:

A linked list is a non-sequential collection of data items. It is a dynamic data structure. For every data
item in a linked list, there is an associated pointer that would give the memory location of the next data
item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be anywhere, but
the accessing of these data items is easier as each data item contains the address of the next data
item.

Advanta g e s of linked lists:

Linked lists have many advantages. Some of the very important
advanta g es are:

1 Linked lists are dynamic data structure s.i.e., they can grow or shrink
during the execution of a progra m.

2 Linked lists have efficient memory utilization. Here, memory isnot
pre- allocated. Memory is allocated whenever it is required and it
is de- allocated (removed) when it is no longer needed.

3 Insertion and Deletions are easier and efficient. Linked lists provide
flexibility ininserting a data item at a specified position and deletion
of the data item from the given position.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

1 It consumes more space because every node requires aadditional
pointer to store address of the next node.

2 Searching a particular element in list is difficult and also time
consuming.

Types of Linked Lists:
Basically we can put linked lists into the following four items:

1. Single Linked List.
2. Double Linked List.

63

3. Circular Linked List.
4. Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential manne r .
Hence, it is also called as linear linked list.

A double linked listisone in which all nodes are linked togethe r by multiple
links which helps in accessing both the successor node (next node) and
predeces sor node (previous node) from any arbitrary node within the list.
Therefore each node in a double linked list has two link fields (pointers) to
point to the left node (previous) and the right node (next). This helps to
traverse in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked
list can be made a circular linked list by simply storing address of the very
first node in the link field of the last node.

Acircular double linked list is one, which has both the successor pointer and
predec es sor pointer inthe circular manne r.

Comparis onbetw eenarray and linke d list:

ARRAY

LINKED LIST

Size of an array is fixed

Size of a list is not fixed

Memory is allocated from stack

Memory is allocated from heap

Itisnecess ary to specify the number
of elements during declaration (i.e.,
during compile time).

It is not necessa ry to specify the
number of elements during
declaration (i.e., memory is allocated
during run time).

Itoccupies less memory than alinked
list for the same number of
elements.

It occupies more memory.

Inserting new elements at the front
is potentially expensive because
existing elements need to be shifted
over to make room.

Inserting a new element atany
position can be carried out easily.

Deleting an element from an

array is not possible.

Applicatio n s of linked list:

1 Linked lists are used to represe ntand manipulate polynomial. Polynomials

Deleting an element is possible.

are expression containing terms with non zero coefficient and
exponents. For example:
PX)=aoX"+tai X™1+ ... +an1 X+an

64

2 Represe ntvery large numbers and operations of the large numbe r
such as addition, multiplication and division.

3 Linked lists are to implement stack, queue, trees and graphs.
4. Impleme ntthe symbol table in compiler construction

62 .Singl e Linked List:

A linked list allocates space for each element separately in its own block of memory called a "node".
The list gets an overall structure by using pointers to connect all its nodes together like the links in a
chain.

Each node contains two fields; a "data" field to store whatever element,
and a"next" field which is a pointer used to link to the next node.

Each node is allocated in the heap using malloc(), so the node memory continues
to exist until it is explicitly de- allocated using free(). The front of the list is
apointer to the “start” node. A single linked list is shown in figure 6.2. 1.

STACK HEAP

100
v start . . »
10: 200", 20 300 30 400 40 X

Thestart 100 V "A 200 300 400k
pointer

holdsthe Eachnode Storesthe next Thenext field of
address of storesthedata. node address. thelastnode is
thefirst NULL.

node ofthe

TS

Figure 6.2.1. Single Linked List

The beginning of the linked list isstored in a "start " pointer which points to
the first node. The first node contains a pointer to the second node. The
second node contains apointer to the third node, ... and so on. The last node
in the list has its next field set to NULL to mark the end of the list. Code can
access any node in the list by starting at the start and following the next
pointers.

The start pointer isan ordinary local pointer variable, so it is drawn separat
e ly on the left top to show that it is in the stack. The list nodes are drawn
on the right to show that they are allocated in the heap.

Imple mentationof Singl eLinked List:

65

Before writing the code to build the above list, we need to create a start node
, used to create and access other nodes in the linked list. The following
structur e definition will do (see figure 6.2.2):

' Creating a structure with one data item and a next pointer, which
will be pointing to next node of the list. This is called as self-
referential structure.

' Initialise the start pointer to be NULL.

structslinklist

{
intd ata; node: data | next
structslinklist*next;
}s
typedef struct slinklistnode; start
node*start=NULL; Emptylist: NUL L

Figure6.2.2.Structuredefinition,singlelinknodeandemptylist

The basic operatio nsin asingl elinke dlist are:

' Creation.

' Insertion.

' Deletion.

' Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be allocated for
creating a node. The information is stored in the memory, allocated by using the malloc() function. The
function getnode(), is used for creating a node, after allocating memory for the structure of type node,
the information for the item (i.e., data) has to be read from the user, set next field to NULL and finally
returns the address of the node. Figure 6.2.3 illustrates the creation of a node for single linked list.

node*getnode()

{ newnode
node*newnod e;
newnode= (node *) malloc(sizeof(node)); 10 X
printf("\nEnterdata: "); 100
scanf("%d",&newnode -> data);
newnode->next=NULL;
returnnewnode;

Figure6.2.3.newnodewithavalueofl0

Creatin g a Singly Linked List with ‘n’ nu mb e r of node s :

The following steps are to be followed to create ‘n’ number of nodes:

66

' Get the new node using getnode().

newnode = getnode();

' If the list is empty, assign new node as start.

start = newnode;
' If the list is not empty, follow the steps given below:

' The next field of the new node is made to point the first node
(i.e. start node) inthe list by assigning the address of the first
node.

' The start pointer ismade to point the new node by assigning
the address of the new node.

' Repeat the above steps ‘n’ times.

Figure 6.2.4 shows 4 items in a single linked list stored at different
locations in memory.

start
100 > > —»

10 200 20 300 30 400 40 X

TUuU_ £ UU . . o UU 4UVuU
Figure6.2.4.SingleLinkedListwith4nodes

The function createlist(), is used to create ‘n’ number of nodes:

voidcreatelist(int n)
{ . .
int i
node*newnode;
node*temp;
for(i=0;i<n;it+)
{
newnode= getnode();
if (start==NULL)
{
start=newnode;
}
else
{
temp=start;
while(temp-> next !'= NULL)
temp=temp->next;
temp->next=newnode;
}
}
}

67

Insertion of a Node:

One of the most primitive operations that can be done in a singly linked list is the insertion of a node.
Memory is to be allocated for the new node (in a similar way that is done while creating a list) before
reading the data. The new node will contain empty data field and empty next field. The data field of the
new node is then stored with the information read from the user. The next field of the new node is
assigned to NULL. The new node can then be inserted at three different places namely:

' Inserting anode at the beginning.
' Inserting anode at the end.
' Inserting anode at interme diat e position.

Insertinga node at the beginning:

The following steps are to be followed to insert a new node at the
beginning of the list:

' Get the new node using getnode().
newnode = getnode();

' If the list is empty then start = newnode.

' If the list is not empty, follow the steps given below:

newnode -> next = start;
start = newnode;

The function insert_at_beg(), is used for inserting a node at the
beginning

Figure 6.2.5 shows inserting a node into the single linked list at the
beginning.

68

500 T
—_
-p
10 [200——P 20 (300—— 30 [400F—P 40 X
100 200 300 400
L—p| 5 100 —

Figure6.2.5.Insertinganodeatthebeginning

Insertin ganode at the end:
The following steps are followed to insert a new node at the end of the
list:
' Get the new node using getnode()
newnode = getnode();

' If the list is empty then start = newnode.

' If the list is not empty follow the steps given below:

temp = start;

while(tem p ->next != NULL)
temp =temp -> next;

temp -> next = newnode;

The function insert_ at_ end(), isused for inserting anode at the end.

Figure 6.2. 6 shows inserting a node into the single linked list at the end.

start
100

—P | — E—
10 200 20 300 30 400 40 500
100 200 300 400
50 X

Figure6.2.6.Insertinganodeattheend. 500

Inserting a node at intermediate position:
The following steps are followed, to insert a new node in an intermediate position in the list:

' Get the new node using getnode().

newnode = getnode();

69

' Ensure that the specified position is in between first node and last
node. If not, specified position is invalid. This is done by countnode()
function.

' Store the starting addres s (which is in start pointer) intemp and prev
pointers. Then travers e the temp pointer upto the specified position
followed by prev pointer.

' After reaching the specified position, follow the steps given below:

prev -> next = newnode;
newnode -> next = temp;

' Let the interme diat e position be 3.

The function insert_at_mid(), is used for inserting a node in the
interme diate position.

Figure 6.2.7 shows inserting a node into the single linked list at a specified intermediate position other
than beginning and end.

A 5
start ‘ grev ---7/---> tenp

100
10 200 2 500 —_ 30 |4o00 40 X
100 200 3loo 400

.

5.0 200
Figure6.2.7.Insertinganodeatanintermediateposition.

500 newnode

Deleti onof anode:

Another primitive operation that can be done in asingly linked list is the deletion
of anode. Memory is to be released for the node to be deleted. A node can be
deleted from the list from three different places namely.

' Deleting anode at the beginning.
' Deleting anode at the end.
' Deleting anode at interm e diate position.

Deletinga node at the beginning:

70

The following steps are followed, to delete a node at the beginning of the
list:

If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:
temp = start;

start = start -> next;
free(tem p);

The function delete_at_beg(), is used for deleting the first node in the list.

Figure 6.2.8 shows deleting a node at the beginning of a single linked list.

-2.00.}"%"» 20

—>
30 400
200

300

40 X
300 400
Figure6.2.8. Deletinganodeat thebeginning.

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:
temp =prev = start;

while(tem p -> next != NULL)
{

prev = temp;
temp = temp -> next;
}

prev ->next = NULL;
free(tem p);

The function delete_ at_last(), is used for deleting the last node in the list.

Figure 6.2. 9 shows deleting anode at the end of asingle linked list.

71

start

100
P HE
10 [200 ——pf 20 (300 ——pf 30 [X (--A-pi 40 | X

100 200 300 400

Figure6.2.9.Deletinganodeattheend.

Deleting a node at Intermediate position:

The following steps are followed, to delete anode from an interm e diat e
position in the list (List must contain more than two node).

' If list is empty then display ‘Empty List’ message
' If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)

{
temp =prev =start;
ctr = 1,
while(ctr < pos)
{
prev = temp;
temp =temp -> next;
ctr++;
}
prev ->next =temp -> next;
free(tem p);
printf("\n node deleted..");
}

The function delete_ at_ mid(), is used for deleting the interme diat e node
in the list.

Figure 6.2.10 shows deleting a node at a specified intermediate position other than beginning and
end from a single linked list.

start

100
L T -,

10 1300 1201300 r’ 30 1aq0 40 X

100 200 300 400

Figure6.2.10.Deletinganodeatanintermediateposition.

Travers al and displaying a list (Left to Right):

72

To display the information, you have to traverse (move) a linked list, node
by node from the first node, until the end of the list is reached. Traversing a list
involves the following steps:

' Assign the address of start pointer to atemp pointer.
' Display the information from the data field of each node.

The function traverse () is used for traversing and displaying the information
stored in the list from left to right.

voidtraverse()
{
node*temp;
temp=start;
printf("\nThe contents ofList (Left to Right): \n");
if(start==NULL)
printf("\nEmptyList");
else
while(temp!=NULL)
{
printf("%d->",temp -> data);
temp=temp->next;
}
printf("X");
}

Alternatively there is another way to traverse and display the information.
That is in reverse order. The function rev_traverse(), is used for traversing
and displaying the information stored in the list from right to left.

voidrev_traverse(node*st)

{
if (st==NULL)

{
return;
}
else
{
rev_traverse(st->next);
printf("%d->",st->data);
}

Counting the Number of Nod es:

The following code will count the number of nodes exist in the list using
recursion .

73

intcountnode(node *st)
{
if (st==NULL)
returnoO;
else
return(l+countnode(st->next));
}

63 A Complete Source Code for the Implementation of Single Linked List:

#include <stdio. h>
include < conio.h >
#include <stdlib.h >

struct slinklist

{

int data;
struct slinklist *next;

3
typedef struct slinklist node; node

*start = NULL;

int menu()
{
int ch;
clrscr();
printf("\n 1.Create a list ");
printf("\n-___________ .. ");

printf("\n 2.Insert a node at beginning "); printf("\n
3.Insert a node at end");

printf("\n 4.Insert anode at mlddle")
printf("\n-___________ ... ");

printf("\n 5.Delete a node from beginning"); printf("\n
6.Delete a node from Last");

printf("\n 7.Delete anode from Middle");
printf("\n-___________ . ");

printf("\n 8.Traverse the list (Left to Right)");
printf("\n 9.Traverse the list (Right to Left)");
printf("\n-_________ ... ");

printf("\n 10. Count nodes ");

printf("\n 11. Exit ");

printf("\n\ n Enter your choice: ");

scanf("% d",& ch);

return ch;

}
node* getnode()

node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("% d", &newnode -> data);

newnode -> next = NULL;

return newnode;

}
int countnode(node *ptr)
{
intcount=0;
while(ptr I= NULL)
{
count + + ;

ptr = ptr -> next;

74

return (count);

}
void createlist(int n)
{
inti;
node *newnode;
node *temp;
for(i=0;i<n;i++)
{
newnode = getnode();
if(start == NULL)
{
start = newnode;
}
else
{
temp = start;
while(temp -> next = NULL) temp
= temp -> next;
temp -> next = newnode;
}
}
}
void traverse()
{
node *temp;
temp = start;
printf("\n The contents of List (Left to Right): \n"); if(start = =
NULL)
{
printf("\n Empty List");
return;
}
else
while(temp != NULL)
{
printf("% d- ->", temp ->data);
temp =temp -> next;
}
printf(" X ");
}

void rev_traverse(node *start)

if(start = = NULL)

{
return;
}
else
{
rev_traverse(start->next);
printf("% d -->", start -> data);
}

void insert_ at_ beg()

{

node *newnode;
newnode = getnode();
if(start == NULL)

{

}

else

75

start = newnode;

newnode -> next = start;

76

start = newnode;

}
}
void insert_ at_ end()
{
node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{
start = newnode;
}
else
{
temp = start;
while(temp ->next = NULL)
temp =temp ->next;
temp -> next = newnode;
}
}

void insert_ at_ mid()

{
node *newnode, *temp, *prev; int
pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("% d", &pos);
nodectr = countnode(start);
if(pos > 1 && pos < nodectr)

temp = prev = start;
while(ctr < pos)

prev = temp;
temp = temp -> next; ctr+
+;

}

prev -> next = newnode;
newnode -> next = temp;

else

printf(" position %d is not a middle position", pos);

void delete_at_beg()

{
node *temp;
if(start == NULL)
{
printf("\n No nodes are exist.."); return
}
else
{
temp = start;
start = temp -> next; free(
temp);
printf("\n Node deleted ");
}
}

void delete_ at_last()

{

node *temp, *prev;

77

if(start == NULL)
{

78

printf("\n Empty List..");

return ;
}
else
{ -
temp = start;
prev = start;
while(temp -> next = NULL)
{
prev = temp;
temp = temp -> next;
}
prev -> next = NULL;
free(temp);
printf("\n Node deleted ");
}
}
void delete_at_ mid()
{
int ctr = 1, pos, nodectr; node
*temp, *prev;
if(start = = NULL)
printf("\n Empty List..");
return ;
}
else
{
printf("\n Enter position of node to delete: "); scanf("%
d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
printf("\nThis node doesnot exist");
}
if(pos > 1 && pos < nodectr)
temp = prev = start;
while(ctr < pos)
prev = temp;
temp =temp ->next;
ctr ++;
}
prev -> next = temp -> next; free(
temp);
printf("\n Node deleted..");
}
else
{
printf("\n Invalid position..");
getch();
}
}
}
void main(void)
int ch, n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
case 1:

79

if(start == NULL)

printf("\n Number of nodes you want to create: "); scanf("%
d", &n);

createlist(n);

printf("\n List created..");

else
printf("\n List is already created.."); break;

case 2:

insert_at_beg();
break;

case 3:
insert_at_end();
break;

case 4:
insert_at_mid();
break;

case 5:
delete_at_beg();
break;

case 6:
delete_at_last();
break;

case 7:
delete_at_mid();
break;

case 8:
traverse();
break;

case 9:
printf("\n The contents of List (Right to Left): \n");
rev_traverse(start);
printf(" X");
break;

case 10:
printf("\n No of nodes : %d ", countnode(start));
break;

case 11:
exit(0);

}
getch();

64 . DoubleLinked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in accessing both
successor node and predecessor node from the given node position. It provides bi-directional
traversing. Each node contains three fields:

' Left link.
' Data.
' Right link.

The left link points to the predece ssor node and the right link points to
the successor node. The data field stores the required data.

Many applications require searching forward and backward thru nodes
of a list. For example searching for aname in atelephone directory

80

would need forward and backward scanning thru a region of the whole
list.

The basic operations in a double linked list are:

' Creation.
' Insertion.
' Deletion.

' Traversing.

A double linked list is shown in figure 6.3.1.

STACK Storesthe HEAP
previous node

100 - address.
i start —>> ——p
! X 10 200 | g 1100 | 20 300 1200 30 X

: <4

A\ :
Thestart 100 i 200 300
pointer A7 AN &
holdsthe Storesthedata. Storesthe next Theright field of
address of node address. thelastnode is
thefirst NULL.

node ofthe
list.

Figure 6.3.1. Double Linked List

The beginning of the double linked list is stored in a "start " pointer which
points to the first node. The first node’s left link and last node’s right link is
set to NULL.

The following code gives the structur e definition:

struct dlin klist
{ node: left data |[right
struct dlinklist * left;
int d ata;
struct dlinklist*rig ht;

}; start

typedef struct dlinklist node; Emptylist: NUL L
node*start=NULL;

Figure6.4.1.Structuredefinition,doublelinknodeandemptylist

Creatin g a nod e for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory
has to be allocated for creating a node. The information isstored in the
memory, allocated by using the malloc() function. The function getnode(),
is used for creating a node, after allocating memory for the structur e of type
node, the information for the item (i.e., data) has to be read from the user
and set left field to NULL and right field also set to NULL (see figure 6.2. 2).

81

node*getnode()

{
node*newnode;
newnode=(node *) malloc(sizeof(node)); newnode
printf("\nEnterdata: "); X 10 X
scanf("%d",&newnode -> data);
newnode->left=NULL: 100
newnode->right= NULL;
returnnewnode;

}

Figure6.4.2.newnodewithavalueofl0

Creatin g a Double Linked List with ‘n’ number of node s:
The following steps are to be followed to create ‘n’ number of nodes:

' Get the new node using getnode().
newnode =getnod e();

' If the list is empty then start = newnode.

' If the list is not empty, follow the steps given below:

' The left field of the new node is made to point
previous node.

the

' The previous nodes right field must be assigned with

address of the new node.
' Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes:

voidcreatelist(int n)
{ . .
int i
node*newnode;
node*temp;
for(i=0;i<n;i++)
{
newnode= getnode();
if (start==NULL)
{
start=newnode;
}
else
{
temp=start;
while(temp->right)
temp=temp -> rig ht;
temp->right=newnode;
newnode->left=temp;
}
}
}

82

Figure 6.4.3 shows 3 items in a double linked list stored atdifferent

locations.
start
100 —|_>
P —p
X 10 200 [g 1100 | 20 300\ | 200 30 X
100 200 300

Figure6.4.3.DoublelLinkedListwith3nodes

Insertinga node at the beginning:

The following steps are to be followed to insert a new node at the beginning
of the list:
' Get the new node using getnode().
newnode=getnode();

If the list is empty then start = newnode.
If the list is not empty, follow the steps given below:

newnode ->right = start;
start -> left = newnode;

start = newnode;

The function dbl_insert_ beg(), isused for inserting a node at the beginning.
Figure 6.4. 4 shows inserting a node into the double linked list at the

beginning.

start

400 -

400 10 200“ I_100 20 300< 1200 30 X

200

300

400

Figure6.4.4.Insertinganodeatthebeginning

Insertin ganode at the end:

The following steps are followed to insert a new node at the end of the
list:

' Get the new node using getnode()

83

newnode=getnode();

' If the list is empty then start = newnode.

' If the list is not empty follow the steps given below:

temp = start;

while(tem p ->right 1= NULL)
temp =temp -> right;

temp -> right = newnode;

newnode -> left = temp;

The function dbl_insert_end(), is used for inserting anode at the end.
Figure 6.4. 5shows inserting anode into the double linked list at the end.

start

T00
> —>
< < T

X710 200 TO0 20 300 700 30 400

100 200 366
300 40 X

400

Figure6.4.5.Insertinganodeattheend

Insertinga node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the list;

' Get the new node using getnode().

newnode =getnode();

' Ensure that the specified position is in between first node and last
node. If not, specified position is invalid. This is done by countnode()

function.

' Store the starting addres s (which is in start pointer) intemp and prev
pointers. Then travers e the temp pointer upto the specified position

followed by prev pointer.

' After reaching the specified position, follow the steps given below:

newnode -> left = temp;

newnode -> right = temp -> right; temp ->
right -> left = newnode;

temp -> right = newnode;

84

The function dbl_insert_ mid(), is used for inserting a node in the interme
diate position. Figure 6.4. 6 shows inserting a node into the double linked
list at a specified interme diate position other than beginning and end.

start
1700 100 40 200

400
400 20 300
X 10 400

100
200 30 X

Figure6.4.6.Insertinganodeatanintermediate ggpgition

Deleting a node at the begin ning:

The following steps are followed, to delete a node at the beginning of the list:
' If list is empty then display ‘Empty List’ message.
' If the list is not empty, follow the steps given below: temp
= start;
start = start -> right;

start -> left = NULL;
free(tem p);

The function dbl_delete_ beg(), is used for deleting the first node in the list.
Figure 6.4. 6 shows deleting a node at the beginning of a double linked list.

<
100 200 300

200 [
A e | >
e X 1 10 1200 | | X 20 [300 200 30 | X

Figure6.4.6.Deletinganodeatbeginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
' If list is empty then display ‘Empty List’ message

' If the list is not empty, follow the steps given below:

temp = start;

85

while(tem p -> right '= NULL)
{

}
temp ->left ->right = NULL,;
free(tem p);

temp = temp -> right;

The function dbl_delete_last(), is used for deleting the last node in the
list. Figure 6.4. 7 shows deleting anode at the end of a double linked list.

start

100 —|_>
X 10 |[200 “ ’_100 20 X ;’i}_tizoo !

- 130 0 X
100 200 300 |
Figure6.4.7.Deletinganodeattheend
Deleting a node at Intermediate position:
The following steps are followed, to delete anode from an interm e diat e
position in the list (List must contain more than two nodes).
' If list is empty then display ‘Empty List’ message.
' If the list is not empty, follow the steps given below:
' Get the position of the node to delete.
' Ensure that the specified position is in betwee n first node

and last node. If not, specified position isinvalid.

' Then perform the following steps:

if(pos > 1 && pos < nodectr)

{
temp = start;
i=1;
while(i < pos)
{
temp =temp -> right;
i++;
}
temp -> right -> left = temp -> left;
temp -> left -> right =temp ->right;
free(temp);
printf("\n node deleted..");
}

86

The function delete_at_mid(), is used for deleting the intermediate node in the list. Figure 6.4.8 shows
deleting a node at a specified intermediate position other than beginning and end from a double linked
list.

start

100 —|—>
X | 10 |300 [100} 20 !300; Plio0| 30 | X

100 200 300

Figure6.4.8Deletinganodeatanintermediateposition

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse the list, node by node from
the first node, until the end of the listisreache d. The function traverse_left_right
() is used for traversing and displaying the information stored in the list from left
to right.

The following steps are followed, to traverse a list from left to right:

' If list is empty then display ‘Empty List’ message.
' If the list is not empty, follow the steps given below:

temp = start;
while(tem p = NULL)
{

print temp -> data;
temp = temp -> right;

Travers al and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node
by node from the first node, until the end of the list is reached. The function
traverse_right_left () is used for traversing and displaying the information
stored in the list from right to left.

The following steps are followed, to traverse a list from right to left:
' If list is empty then display ‘Empty List’ message.
' If the list is not empty, follow the steps given below:
temp = start;
while(tem p ->right = NULL)

temp =temp -> right;
while(tem p = NULL)

87

print temp -> data;
temp = temp -> left;

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list (using recursion).

intcountnode(node*start)

{
if(start==NULL)
returnoO;
else
return(l+countnode(start->right));
}

5. A Complete Source Code for the Implementation of Double Linked List:

#include <stdio.h>#
include <stdlib. h > #
include < conio. h >

struct dlinklist

{
struct dlinklist *left; int
data;
struct dlinklist *right;
%

typedef struct dlinklist node; node
*start = NULL,;

node* getnode()

node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("% d", &newnode -> data);

newnode -> left = NULL;

newnode -> right = NULL;

return newnode;

}

int countnode(node *start)

{
if(start == NULL)

88

return O;

else .
return 1 + countnode(start-> right);
}
int menu()
{
int ch;
clrscr();
printf("\n 1.Create");
printf("\n-____________
printf("\n 2. Insert a node at beginning *) printf("\n
3. Insert a node at end");
printf("\n 4. Insert anode at mlddle);
printf("\n-________
printf("\n 5. Delete a node from beglnnlng "); printf("\n
6. Delete a node from Last");
printf("\n 7. Delete anode from Mlddle")
printf("\n-_________]
printf("\n 8. Traverse the list from Left to Right ");
printf("\n 9. Traverse the list from Right to Left ");
printf("\n-_________ ");
printf("\n 10.Count the Number of nodes in the list"); printf(*\n
11.Exit");
printf("\n\ n Enter your choice: ");
scanf("% d", &ch);
return ch;
}

void createlist(int n)

{ "
inti;
node *newnode;
node *temp;
for(i=0;i<n;i++)
{
newnode = getnode();
if(start = = NULL)
start = newnode;
else
{
temp = start;
while(temp -> right)
temp = temp -> right; temp
-> right = newnode;
newnode -> left = temp;
}
}
}

void traverse_left_to_right()
{
node *temp;
temp = start;
printf("\n The contents of List: "); if(start
==NULL)
printf("\n Empty List");
else
while(temp != NULL)

printf("\t %d ", temp -> data); temp
= temp -> right;

}

void traverse_ right_to_left()

89

90

node *temp;
temp = start;
printf("\n The contents of List: "); if(start
==NULL)
printf("\n Empty List");
else
while(temp -> right = NULL) temp
= temp -> right;
while(temp != NULL)
{
printf("\t% d", temp -> data); temp
=temp -> left;

}

void dll_insert_ beg()
{
node *newnode;
newnode = getnode();
if(start = = NULL)
start = newnode;
else
{
newnode ->right = start;
start -> left = newnode;
start = newnode;

void dll_insert_ end()

{
node *newnode, *temp;
newnode = getnode();
if(start = = NULL)
start = newnode;
else
{
temp = start;
while(temp -> right = NULL) temp
=temp -> right;
temp -> right = newnode;
newnode -> left = temp;
}
}

void dll_insert_ mid()

{
node *newnode,* tem p;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position:);
scanf("% d", &pos);
nodectr = countnode(start);
if(pos - nodectr > = 2)

{

}
if(pos > 1 && pos < nodectr)

printf("\n Position is out of range.."); return;

temp = start;
while(ctr < pos - 1)

temp = temp -> right; ctr+
t)

newnode -> left = temp;
newnode -> right = temp -> right; temp ->
right -> left = newnode;

91

temp -> right = newnode;

else
printf(" position %d of list is not a middle position ", pos);

void dll_delete_ beg()

{
node *temp;
if(start = = NULL)
{
printf("\n Empty list");
getch();
return
}
else
{
temp = start;
start = start -> right; start -
> left = NULL; free(
temp);
}
}

void dll_delete_last()

{
node *temp;
if(start = = NULL)
printf("\n Empty list");
getch();
return ;
}
else
{
temp = start;
while(temp -> right = NULL) temp
= temp -> right;
temp -> left -> right = NULL; free(
temp);
temp = NULL;
}
}

void dll_delete_ mid()

{

inti =0, pos, nodectr; node

*temp;

if(start = = NULL)

{
printf("\n Empty List");
getch();
return;

}

else

{

printf("\n Enter the position of the node to delete: "); scanf("% d",
&pos);

nodectr = countnode(start);

if(pos > nodectr)

printf("\nthis node does not exist"); getch();
return;

}
if(pos > 1 && pos < nodectr)

temp = start;

92

93

}
else
{
}
}
}
void main(void)
{
int ch, n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
case 1 :
case 2 :
case 3 :
case 4 :
case 5 :
case 6 :
case 7 :
case 8 :
case 9 :
case 10:
case 11:
}
getch();
}
}

while(i < pos)

}

temp = temp -> right; i++;

temp -> right -> left = temp -> left;
temp -> left ->right = temp ->right;
free(temp);

printf("\n node deleted..");

printf("\n It is not a middle position.."); getch();

printf("\n Enter Number of nodes to create: "); scanf("%
d", &n);

createlist(n);

printf("\n List created..");

break;

dll_insert_beg();
break;

dll_insert_end();
break;

dll_insert_mid();
break;

dll_delete_beg();
break;

dll_delete_last();
break;

dll_delete_mid();
break;

traverse_left_to_right();
break;

traverse_right_to_left();
break;

printf("\n Number of nodes: %d", countnode(start)); break;

exit(0);

94

66 .Circular Single Linked List:

It is just asingle linked list in which the link field of the last node points back
to the address of the first node. A circular linked list has no beginning and
noend. Itisnecess ary to establish a special pointer called start pointer always
pointing to the first node of the list. Circular linked lists are frequently used
instead of ordinary linked list because many operations are much easier to
implement. In circular linked list no null pointers are used, hence all pointers
contain valid address.

A circular single linked list is shown in figure 6.6. 1.

start

100

—
—pp{ 10 |200—® 20 [300——P 30 [400—P 40 [100

100 200 300 400

Figure6.6.1.Circular Single Linked List
The basic operations in a circular single linked list are:

' Creation.
' Insertion.
' Deletion.

' Traversing.

Creatin gacircular single Linked List with ‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:

' Get the new node using getnode().
newnode = getnode();

' If the list is empty, assign new node as start.
start = newnode;

' If the list is not empty, follow the steps given below:

temp = start;

while(tem p ->next '= NULL)
temp =temp -> next;

temp -> next = newnode;

' Repeat the above steps ‘n” times.

95

' newnode ->next = start;

The function createlist(), is used to create ‘n’ number of nodes:
Insertinga node at the beginning:

The following steps are to be followed to insert a new node at the beginning
of the circular list:

' Get the new node using getnode().
newnode = getnode();
' If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

' If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start) last =
last -> next;

newnode -> next = start; start

= newnode;

last -> next = start;

The function cll_insert_ beg(), is used for inserting a node at the beginning.
Figure 6.6. 2 shows inserting a node into the circular single linked list at the
beginning.

stlart T’
10 20 20 300 30 400 40 500
—
—P 1100 200 300 400

£

500 Figure6.6.2.Insertinganodeatthebeginning

Inserting anode at the end:

The following steps are followed to insert a new node at the end of the
list:

' Get the new node using getnode().

newnode = getnode();

96

' If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

' If the list is not empty follow the steps given below:
temp = start;
while(tem p -> next != start)
temp =temp -> next,;
temp ->next = newnode;
newnode ->next = start;

The function cll_insert_end(), is used for inserting anode atthe end.

Figure 6.6.3 shows inserting a node into the circular single linked list at
the end.

4+ +
>ldatll

100
10 1200/ > .0 la0] > 20 laco > 40 lsq0

100 200 300 400

IR

50 100
500

Figure6.6.3Insertinganodeattheend.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the
list:

' If the list is empty, display a message ‘Empty List’.

' If the list is not empty, follow the steps given below:

last =temp = start;

while(last -> next != start) last =
last -> next;

start = start -> next; last -

> next = start;

' After deleting the node, if the list is empty then start =NULL.

The function cll_delete_ beg(), is used for deleting the first node in the
list. Figure 6.6.4 shows deleting a node at the beginning ofa circular

97

linked list.
start
200
i §mmmmmm———— B it ’
I ! 1 A | ——
S / ______ - _"10 _____ 1200;) 20 300 —P» 30 400 40 200 |
4 400 200 300 400
temp
Figure6.6.4.Deletinganodeatbeginning.

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list

If the list is empty, display amessage ‘Empty List’.

If the list is not empty, follow the steps given below
temp = start;
prev = start;

while(tem p -> next != start)

{
prev = temp;
temp = temp -> next;

ky

prev -> next = start;

After deleting the node, if the list is empty then start =NULL.

The function cll_delete_last(), is used for deleting the last node in the
list.

Figure 6.6.5 shows deleting a node at the end of a circular single linked
list.

start
100

| -- 7/- - R
—> —> o
10 200 20 300 30 100_‘ 40 100
+6-6 260 306 400
Figure6.6.5.Deletinganodeattheend.

Traversing a circular single linked list from left to right:
The following steps are followed, to traverse a list from left to right:

If list is empty then display ‘Empty List’ message.

98

' If the list is not empty, follow the steps given below:

temp = start; do

{
printf("% d ", temp -> data);
temp =temp -> next;

} while(temp != start);

67. A Complete Source Code for the Implementation of Circular Single
Linked List:

#include < stdio. h>
include < conio.h >
#include <stdlib.h >

struct cslinklist
{
int data;
struct cslinklist *next;

%

typedef struct cslinklist node; node
*start = NULL;
int nodectr;

node* getnode()

node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("% d", &newnode -> data);

newnode -> next = NULL;

return newnode;

}

int menu()

{
int ch;
clrscr();

printf("\n 1. Create a list ");

printf("\n\n-__________ .

printf("\n 2. Insert a node at beglnnlng "); printf("\n
3. Insert a node at end");

printf("\n 4. Insert anode at middle");
printf("\n\n-_______________ ");

printf("\n 5. Delete a node from beginning"); printf("\n
6. Delete a node from Last");

printf("\n 7. Delete anode from Middle");
printf("\n\n-_______________ ");

printf("\n 8. Display the list");

printf("\n 9. Exit");

printf("\n\n-__________ . ");

printf("\n Enter your choice: ");

scanf("% d", &ch);

return ch;

99

}

void createlist(int n)

{
inti;
node *newnode;
node *temp;
nodectr =n;
for(i=0;i<n;i++)
{
newnode = getnode();
if(start == NULL)
{
start = newnode;
}
else
{
temp = start;
while(temp -> next = NULL) temp
=temp -> next;
temp -> next = newnode;
}
}
newnode ->next = start; [* last node is pointing to starting node */
}
void display()
{
node *temp;
temp = start;
printf("\n The contents of List (Left to Right): "); if(start = =
NULL)
printf("\n Empty List");
else
do
{
printf("\t %d ", temp -> data); temp
=temp -> next;
}while(tem p !'= start);
printf(" X");
}
void cll_insert_beg()
{
node *newnode, *last;
newnode = getnode();
if(start = = NULL)
{
start = newnode;
newnode -> next = start;
}
else
{
last = start;
while(last -> next = start)
last = last -> next;
newnode ->next = start;
start = newnode;
last -> next = start;
}
printf("\n Node inserted at beginning.."); nodectr +
+;
}
void cll_insert_ end()
{

node *newnode, *temp;
newnode = getnode();

100

if(start == NULL)

101

}

start = newnode;
newnode -> next = start;

}

else

{
temp = start;
while(temp -> next = start)

temp =temp -> next;

temp ->next = newnode;
newnode -> next = start;

}

printf("\n Node inserted at end.."); nodectr
++;

void cll_insert_ mid()

{

node *newnode, *temp, *prev; int i,
pos;

newnode = getnode();

printf("\n Enter the position: ");
scanf("% d", &pos);

if(pos > 1 && pos < nodectr)

temp = start;

prev = temp; i

=]_,

while(i < pos)
prev = temp;

temp = temp -> next; i++;
}
prev -> next = newnode;
newnode -> next = temp;
nodectr + +;
printf("\n Node inserted at middle..");

printf(" position %d of list is not a middle position ", pos);

void cll_delete_ beg()

{

node *temp, *last;
if(start = = NULL)

{
printf("\n No nodes exist..");
getch();
return ;
}
else
{
last = temp = start;
while(last -> next = start)
last = last -> next; start
= start -> next;
last -> next = start; free(
temp);
nodectr- -;
printf("\n Node deleted..");
if(nodectr = = 0)
start = NULL;
}

102

void cll_delete_last()

{

}

node *temp,* prev;
if(start = = NULL)

{

else

printf("\n No nodes exist..");

getch();
return

temp = start;
prev = start;
while(temp -> next != start)

prev = temp;

temp = temp -> next;
}
prev -> next = start; free(
temp);
nodectr- -;
if(nodectr = = 0)

start = NULL;

printf("\n Node deleted..");

void cll_delete_ mid()

{

inti=0, pos;
node *temp, *prev;

if(start = = NULL)

{

else

printf("\n No nodes exist..");
getch();
return ;

printf("\n Which node to delete:);
scanf("% d", &pos);
if(pos > nodectr)

printf("\nThis node does not exist"); getch();
return;

}
if(pos > 1 && pos < nodectr)

temp =start;
prev = start;
i=0;
while(i < pos - 1)
prev = temp;
temp = temp -> next ; i++;
}
prev -> next = temp -> next; free(
temp);
nodectr- -;
printf("\n Node Deleted..");
}
else
{

printf("\n It is not a middle position.."); getch();

103

}
}
void main(void)
{
int result;
int ch, n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
casel:
if(start == NULL)
{
printf("\n Enter Number of nodes to create: "); scanf("%
d", &n);
createlist(n);
printf("\nList created..");
}
else
printf("\n List is already Exist..");
break;
case 2 :
cll_insert_beg();
break;
case 3 :
cll_insert_end();
break;
case 4 :
cll_insert_mid();
break;
case 5 :
cll_delete_beg();
break;
case 6 :
cll_delete_last();
break;
case 7 :
cll_delete_mid();
break;
case 8 :
display();
break;
case 9 :
exit(0);
}
getch();
}
}

Circular Double Linked List:

A circular double linked list has both successor pointer and predece ssor pointer
in circular manne r. The objective behind considering circular double linked
list is to simplify the insertion and deletion operations performe don double
linked list. In circular double linked list the right link of the right most node
points back to the start node and left link of the first node points to the last
node.

104

A circular double linked list is shown in figure 6.8.1.

100
start \—; 300 10 |200 —®100]| 20 300<—P200 30

100

100 200 300

Figure6.8.1.CircularDoublelLinkedList
The basic operations in a circular double linked list are:

' Creation.
' Insertion.
' Deletion.

' Traversing.

Creatin g a Circular Double Linked List with ‘n’ number of nod e s:
The following steps are to be followed to create ‘n’ number of nodes:

' Get the new node using getnode().

newnode = getnode();

' If the list is empty, then do the following

start = newnode;
newnode -> |eft = start;
newnode ->right = start;

' If the list is not empty, follow the steps given below:

newnode -> left = start -> left;
newnode ->right = start;

start -> left- > right = newnode; start -
> left = newnode;

' Repeat the above steps ‘n” times.

The function cdll_createlist(), is used to create ‘n’ numbe r of nodes:

Insertinga node at the beginning:

The following steps are to be followed to insert a new node at

beginning of the list:

' Get the new node using getnode().

105

the

newnode=getnode();

' If the list is empty, then

start = newnode;
newnode -> left = start;
newnode -> right = start;

' If the list is not empty, follow the steps given below:

newnode -> left = start -> left;
newnode ->right = start;

start -> left -> right = newnode; start ->
left = newnode;

start = newnode;

The function cdll_insert_ beg(), is used for inserting a node at the beginning.
Figure 6.8. 2 shows inserting a node into the circular double linked list at the

beginning.

start

400

< > i
400 10 200 T00 20 300 200 30 400

100 200 300

300 40 700
400

Figure6.8.2.Ilnsertinganodeatthebeginning

Insertinganode at the end:
The following steps are followed to insert a new node at the end of the
list:

' Get the new node using getnode()

newnode=getnode();

' If the list is empty, then

start = newnode;
newnode -> left = start;
newnode -> right = start;

' If the list is not empty follow the steps given below:

newnode -> left = start -> left;
newnode ->right = start;

start -> left -> right = newnode; start ->
left = newnode;

106

The function cdll_insert_ end(), is used for inserting a node at the end. Figure
6.8.3 shows inserting a node into the circular linked list at the end.

start j
100

400 10 200 100 20 300 200 30 400

100 200 300

N

40 100

w
o
o

Figure6.8.3.Insertinganodeattheend

Insertinga node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the list:

' Get the new node using getnode().

newnode =getnode();

' Ensure that the specified position is in between first node and last
node. If not, specified position is invalid. This is done by countnode()

function.

' Store the starting addres s (which is in start pointer) intemp and prev
pointers. Then travers e the temp pointer upto the specified position
followed by prev pointer.

' After reaching the specified position, follow the steps given below:

newnode -> left = temp;

newnode -> right = temp -> right; temp ->
right -> left = newnode;

temp -> right = newnode;

nodectr + +;

The function cdll_insert_mid(), is used for inserting a node in the intermediate position. Figure 6.8.4

shows inserting a node into the circular double linked list at a specified intermediate position other than
beginning and end.

107

start

100

i

100 40 200

400
300 10 400 g 400 20 300
100 200 <—‘

200 30 100
300 <—‘

Figure6.8.4.Insertinganodeatanintermediateposition

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:
' If list is empty then display ‘Empty List’ message.

' If the list is not empty, follow the steps given below:

temp = start;

start = start -> right;

temp -> left -> right = start; start ->
left = temp -> left;

The function cdll_delete_ beg(), is used for deleting the first node in the list.

Figure 6.8. 5 shows deleting a node at the beginning of a circular double
linked list.

--------- e ¢
start *

200 ! ! i Ly

- i i e <
300 10 200 300 20 300 200 30 200—‘

100 200 300

Figure6.8.5.Deletinganodeatbeginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

' If list is empty then display ‘Empty List’ message

' If the list is not empty, follow the steps given below:

108

temp = start;
while(tem p -> right != start)

{

}
temp -> left -> right =temp ->right;
temp ->right -> left =temp -> left;

temp = temp -> right;

The function cdll_delete_last(), is used for deleting the last node in the list.
Figure 6.8. 6 shows deleting a node at the end of a circular double linked list.

start

100 ﬁ

> <7
200 10 200 < 1100 20 100 < 5200 30 100
100 200 _‘ 300

Figure6.8.6.Deletinganodeattheend

Deletinga node at Intermediate position:

The following steps are followed, to delete anode from an interm e diat e
position in the list (List must contain more than two node).

' If list is empty then display ‘Empty List’ message.
' If the list is not empty, follow the steps given below:
' Get the position of the node to delete.

' Ensure that the specified position is in betwee n first node
and last node. If not, specified position isinvalid.

' Then perform the following steps:

if(pos > 1 && pos < nodectr)

{
temp = start;
i=1;
while(i < pos)
{

temp =temp -> right ;

i++;
}
temp -> right -> left = temp -> left;
temp -> left ->right =temp ->right;
free(temp);

109

printf(*\n node deleted..”);
nodectr- -;

¥

The function cdll_delete_ mid(), is used for deleting the interm ediat e node
in the list.

Figure 6.8.7 shows deleting a node at a specified intermediate position other than beginning and end
from a circular double linked list.

start

100 ¢

H i i [L p
300 10 3001 1100) 20 1300, 71100 30 100

100 200 300

Figure6.8.7.Deletinganodeatanintermediateposition

Traversing a circular double link ed list from left to right:

The following steps are followed, to traverse a list from left to right:
' If list is empty then display ‘Empty List’ message.

' If the list is not empty, follow the steps given below:

temp = start;

Print temp -> data;

temp = temp -> right;

while(tem p != start)

{
print temp -> data;
temp = temp -> right;

}

The function cdll_display_left _right(), is used for traversing from left to
right.

Traversing a circular double link ed list from right to left:

The following steps are followed, to traverse a list from right to left:
' If list is empty then display ‘Empty List’ message.
' If the list is not empty, follow the steps given below:

temp = start;
do

{

110

temp = temp -> left; print
temp -> data;
} while(temp != start);

The function cdll_display_right_left(), is used for traversing from right to
left.

6.9. A Complete Source Code for the Implementation of Circular Double
Linked List:

#include < stdio. h >
#include <stdlib.h >
#include <conio.h >

struct cdlinklist

{
struct cdlinklist *left; int
data;
struct cdlinklist *right;
kb

typedef struct cdlinklist node; node
*start = NULL,;
int nodectr;

node* getnode()

node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("% d", &newnode -> data);

newnode -> left = NULL;

newnode -> right = NULL;

return newnode;

}

int menu()
{
int ch;
clrscr();
printf("\n 1. Create ");
printf("\n\n ");
printf("\n 2. Insert a node at Beginning"); printf("\n
3. Insert a node at End");
printf("\n 4. Insert anode at Middle");
printf("\n\n-_____________ ... ");
printf("\n 5. Delete a node from Beginning"); printf("\n
6. Delete a node from End");
printf("\n 7. Delete anode from Mlddle ;
printf("\n\n-_____________ ...
printf("\n 8. Display the list from Left to Right"); printf("\n 9.
Display the list from Right to Left"); printf("\n 10.Exit");
printf("\n\ n Enter your choice: ");
scanf("% d", &ch);
return ch;

}

void cdll_createlist(int n)

{ - -
inti;
node *newnode, *temp;
if(start == NULL)

103

nodectr =n;
for(i=0;i<n;i++)
{

newnode = getnode();
if(start = = NULL)

{
start = newnode;
newnode -> left = start;
newnode -> right = start;
}
else
{
newnode -> left = start -> left;
newnode -> right = start;
start -> left- > right = newnode; start -
> |eft = newnode;
}
}
}
else
{
printf("\n List already exists..");
}
void cdll_display_left_ right()
{
node *temp;
temp = start;
if(start = = NULL)
printf("\n Empty List");
else
{
printf("\n The contents of List: "); printf("
%d ", temp -> data);
temp = temp -> right;
while(temp !=start)
{
printf(" %d ", temp -> data); temp
= temp -> right;
}
}
}
void cdll_display_ right_left()
{
node *temp;
temp = start;
if(start == NULL)
printf("\n Empty List");
else
{
printf("\n The contents of List: ");
do
{
temp = temp -> left;
printf("\t% d", temp -> data);
Jwhile(tem p != start);
}
}
void cdll_insert_ beg()
{

node *newnode;
newnode = getnode();
nodectr + + ;

if(start == NULL)

{

104

start = newnode;
newnode -> left = start;
newnode -> right = start;

}

else

{ newnode -> left = start -> left;
newnode ->right = start;
start -> left ->right = newnode;
start -> left = newnode;
start = newnode;

}

void cdll_insert_ end()

{
node *newnode,* tem p;
newnode = getnode();
nodectr + + ;
if(start = = NULL)
{
start = newnode;
newnode -> left = start;
newnode -> right = start;
}
else
{
newnode -> left = start -> left;
newnode ->right = start;
start -> left ->right = newnode;
start -> left = newnode;
}
printf("\n Node Inserted at End");
}
void cdll_insert_ mid()
{
node *newnode, *temp, *prev; int
pos, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("% d", &pos);
if(pos - nodectr > = 2)
{
printf("\n Position is out of range.."); return;
if(pos > 1 && pos < = nodectr)
temp = start;
while(ctr < pos - 1)
temp = temp -> right; ctr+
+
newnode -> left = temp;
newnode -> right = temp -> right; temp ->
right -> left = newnode;
temp -> right = newnode;
nodectr + +;
printf("\n Node Inserted at Middle.. ");
}
else
{
printf(" position %d of list is not a middle position", pos);
}
}

105

void cdll_delete_ beg()

{
node *temp;
if(start = = NULL)
{
printf("\n No nodes exist..");
getch();
return
}
else
{
nodectr- -;
if(nodectr = = 0)
free(start);
start = NULL,;
}
else
{
temp = start;
start = start -> right;
temp -> left -> right = start;
start -> left =temp -> left;
free(temp);
}
printf("\n Node deleted at Beginning..");
}
}
void cdll_delete_last()
{
node *temp;
if(start = = NULL)
{
printf("\n No nodes exist..");
getch();
return;
}
else
{
nodectr- -;
if(nodectr = = 0)
{
free(start);
start = NULL;
}
else
{
temp = start;
while(temp -> right != start)
temp = temp -> right;
temp -> left ->right =temp ->right;
temp ->right -> left = temp -> left;
free(temp);
}
printf("\n Node deleted from end *);
}
}
void cdll_delete_ mid()
{ .
int ctr = 1, pos;
node *temp;

if(start = = NULL)

printf("\n No nodes exist..");
getch();
return;

106

107

else

void main(void)

{

int ch,n;
clrser();
while(1)
{

printf("\n Which node to delete:);
scanf("% d", &pos);
if(pos > nodectr)

{

}

printf("\nThis node does not exist"); getch();
return;

if(pos > 1 && pos < nodectr)

else

temp = start;
while(ctr < pos)

temp = temp -> right ; ctr+
+-

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp ->right;
free(temp);

printf("\n node deleted..");

nodectr- -;

printf("\n It is not a middle position.."); getch();

ch =menu();
switch(ch)

{

case 1 :
printf("\n Enter Number of nodes to create: "); scanf("%
d", &n);
cdll_createlist(n);
printf("\n List created..");
break;
case 2 :
cdll_insert_beg();
break;
case 3 :
cdll_insert_end();
break;
case 4 :
cdll_insert_mid();
break;
case 5 :
cdll_delete_beg();
break;
case 6 :
cdll_delete_last();
break;
case 7 :
cdll_delete_mid();
break;
case 8 :
cdll_display_left_ right();
break;
case 9 :

108

cdll_display_ right_left();
break;

case 10: .
exit(0);

}
getch();

. Linked List Implementation of Stack:

ecan repres entastack as a linked list. In a stack push and pop operations
re performe d at one end called top. We can perform similar operations at one
nd of list using top pointer. The linked stack looks as shown in figure 6.9.1:

top

400
data next

\—b 40 X
400 f
30 |400
300 A
20 |300

st art 200 A

100 [—® 10 |200
100

Figure 6.9.1. Linked stack
representation

he program for linked list implementation of stack:

include < stdio. h>
include < conio.h >
#include <stdlib.h >

struct stack
{ -
int data;
struct stack *next;

h

void push();

void pop();

void display();

typedef struct stack node;
node *start = N ULL;
node *top = NULL;

node* getnode()
struct stack *temp;

temp =(nod e *) malloc(sizeof(node)) ;
printf("\n Enter data ");

109

scanf("% d", &temp -> data); temp
->next = NULL;
return temp;

}

void push(node *newnode)
node *temp;
if(newnode = = NULL)
{

printf("\n Stack Overflow..");
return;

}
if(start == NULL)

{
start = newnode; top
= newnode;
}
else
{
temp = start;
while(temp -> next 1= NULL) temp
= temp -> next;
temp ->next = newnode;
top = newnode;
}
printf("\n\ n\ t Data pushed into stack");
}
void pop()
{
node *temp;
if(top = = NULL)
printf("\n\ n\ t Stack underflow");
return;
}
temp = start;
if(start -> next = = NULL)
{
printf("\n\ n\ t Popped element is %d ", top ->data);
start = NULL;
free(top);
top = NULL,;
}
else
{
while(temp -> next != top)
{
temp = temp -> next;
}
temp -> next = NULL,;
printf("\n\ n\ t Popped element is %d ", top -> data); free(top);
top = temp;
}
}
void display()
{
node *temp;

if(top == NULL)
printf("\n\ n\ t\ t Stack is empty ");
else

temp = start;
printf("\n\ n\ n\ t\ t Elements in the stack: \n");

110

610

We can represent a queue as a linked list. In a queue data is deleted from
the front end and inserted at the rear end. We can perform similar operations on
the two ends of a list. We use two pointers front and rear for our linked

printf("% 5d ", temp -> data);
while(temp != top)

{
temp = temp -> next;
printf("%5d ", temp ->data);
}
}
}
char menu()
{
char ch;
clrscr();
printf("\n \tStack operations using pointers.. ");
printf("\n ------e-m-- HAIIKKIIEE e \n");
printf("\n 1. Push ");
printf("\n 2. Pop ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
ch = getche();
return ch;
}
void main()
char ch;
node *newnode; do
{
ch = menu();
switch(ch)
{
case '1':
newnode = getnode();
push(newnod e);
break;
case '2':
pop();
break;
case '3':
display();
break;
case '4"
return;
}
getch();
Jwhile(ch I="4");
}

. Linked List Implementation of Queue:

queue implement ation.

The linked queue looks as shown in figure 6.10. 1 :

111

front rear

10 200 —P 20 300—P 30 400 | < 40

100 200 300 400

Figure6.10.1.LinkedQueuerepresentation

he program for linked list implementation of queue:

#include <stdio. h>
#include <stdlib.h >
#include <conio.h >

struct queue
{
int data;
struct queue *next;

%

typedef struct queue node;
node *front = NULL,;
node *rear = NULL;

node* getnode()

node *temp;

temp = (node *) malloc(sizeof(node)) ;
printf("\n Enter data ");

scanf("% d", &temp -> data); temp

-> next = NULL;

return temp;

}
void insert Q()

node *newnode;
newnode = getnode();
if(newnode = = NULL)
{
printf("\n Queue Full");
return;

}
if(front = = NULL)

{ front = newnode;
rear = newnode;
}
else
{
rear ->next =newnode;
rear = newnode;
}
printf("\n\ n\ t Data Inserted into the Queue..");
}
void delete Q()
{
node *temp;
if(front == NULL)
{

printf("\n\ n\ t Empty Queue..");
return;

112

}

temp = front;

front = front -> next;

printf("\n\ n\ t Deleted element from queue is %d ", temp -> data);

free(temp);
}
void display Q()
{
node *temp;
if(front == NULL)
{
printf("\n\ n\ t\ t Empty Queue ");
else
{
temp = front;
printf("\n\ n\ n\ t\ t Elements in the Queue are: "); while(
temp 1= NULL)
{
printf("% 5d ", temp -> data); temp
= temp -> next;
}
}
}
char menu()
{
char ch;
clrscr();
printf("\n \t..Queue operations using pointers.. ");
printf("\n\t ----------- Seleiaiiaiaial iR \n"™);
printf("\n 1. Insert ");
printf("\n 2. Delete ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: "); ch
= getche();
return ch;
}
void main()
char ch;
do
{
ch = menu();
switch(ch)
{
case '1':
insert Q();
break;
case '2':
delete Q();
break;
case '3':
display Q();
break;
case ‘4"
return;
}
getch();
} while(ch 1="4");
}

113

114

Un|t __|

4 Trees

A data structur e is said to be linear if its elements form a sequence or a linear
list. Previous linear data structur es that we have studied like arrays, stacks,
queues and linked lists organize data in linear order.

Some data organizations require categorizing data into groups/ sub- groups.
A data structur e is said to be non linear if its elements form a hierarchical
classification where, d ata items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures represents
hierarchial relationship between individual data elements. Graphs are nothing but trees with certain
restrictions removed.

7.1. TREES:
A tree tis a finite non-empty set of elements. One of these elements is called the root, and the

remaining elements (if any) are partitioned into trees, which are called the subtrees of t. A node
without a parent is called the root node (or root). Nodes with no children are called leaf nodes.

(1)
OB OO0
& ©© O © ©

Figure7.1.1.Recursivestructureoftreeandm-arytree

In the figure 7.1.1, r is a root node and Ti, T,,..., T,are trees with roots ry, r»,..., r,, respectively, then
we can construct a new tree whose root is r and Ty, To,..., Tnare the subtrees of the root. The nodes
Iy, I,..., rhare called the children of r.

In a tree data structure, there is no distinction between the various children of a node i.e., none is the
"first child" or "last child". A tree in which such distinctions are made is called an ordered tree, and
data structures built on them are called ordered tree data structures. Ordered trees are by far the
commonest form of tree data structure.

A special kind of tree called binary tree is easy to maintain in the computer.

7.2. BINARY TREE:

A binary tree is a tree in which each node can have at most two children.

A binary tree is either empty or consists of a node called the root together with two binary trees
called the left subtree and the right subtree.

A tree with no nodes is called as a null tree. A binary tree is shown in figure 7. 2.

115

rightsubtree
leftsubtree

Figure 7.2.1. BinaryTree
Tree Terminology:
Leaf node:

A node with no children is called a leaf (or external node). A node which is not a leaf is called
an internal node.

Path
A sequence of nodes ny, n,, . . ., Ny, such that n;is the parent of ni..fori=1, 2,..., k- 1. The
length of a path is 1 less than the number of nodes on the path. Thus there is a path of length
zero from a node to itself.
For the tree shown in figure 7.2.1, the path between A and | is A, B, D, I.

Siblings

The children of the same parent are called siblings.

For the tree shown in figure 7.2.1, F and G are the siblings of the parent node B and H and |
are the siblings of the parent node D.

Ancestor and Descendent

If there is a path from node A to node B, then A is called an ancestor of B

and
B is called a descendent of A.

Subtree
Any node of a tree, with all of its descend ant s is a subtre e.

Level
The level of the node refers to its distance from the root. The root of the tree has level O, and
the level of any other node in the tree is one more than the level of its parent. For example, in
the binary tree of Figure 7.2.1 node F is at level 2 and node H is at level 3.
The maximum number of nodes at any level is 2.

Height

The maximum level in a tree determines its height. The height of a node in a tree is the length
of a longest path from the node to a leaf. The term depth is also used to denote height of the
tree. The height of the tree of Figure 7.2.1 is 3.

Assigning level numbers and Numbering of nodes for a binary tree:

The nodes of a binary tree can be numbered in a natural way, level by level, left to right. The
nodes of an complete binary tree can be numbered so that the root is assigned the number 1,

116

a left child is assigned twice the number assigned its parent, and a right child is assigned one
more than twice the number assigned its parent. For example, see Figure 7.2.2.

r\/\l}\/—\ ; Level O
»
A 3 » Level 1
> Level 2
o &) o W

@ Q) » Level 3

Figure 7.2.2 . Lev el by level numbering of binary tree

Properties of binary trees:
Some of the important properties of a binary tree are as follows:
1. If h = height of a binary tree, then
a Maximum number of leaves = 2"
b Maximum number of nodes = 2"h+*- 1
2. If a binary tree contains m nodes at level |, it contains at most 2m nodes at level | + 1.

3. Since a binary tree can contain at most one node at level O (the root), it can contain at most 2!
node at level I.

4. The total number of edges in a full binary tree with n node is n - 1.

Strictly Binary tree:
If every non-leaf node in a binary tree has nonempty left and right subtrees, the tree is termed

a strictly binary tree. Thus the tree of figure 7.2.3(a) is strictly binary. A strictly binary tree with
n leaves always contains 2n - 1 nodes.

Full Binary tree:

A full binary tree of height h has all its leaves at level h. Alternatively; All non leaf nodes of a full
binary tree have two children, and the leaf nodes have no children.

A full binary tree with height h has 2"+*- 1 nodes. A full binary tree of height h is a strictly
binary tree all of whose leaves are at level h. Figure 7.2.3(d) illustrates the full binary tree
containing 15 nodes and of height 3.

A full binary tree of height h contains 2"leaves and, 2"- 1 non-leaf nodes.

h
h@
Thus by induction, total number of nodes(tn)8 @2y B2"™E1.

For example, a full binary tree of height 3 contains 23**— 1 = 15 nodes.

117

StrictBinaryTree

StrictlyComplete (b)
binarytree

Completebinarytree(c) Full binary tree (d)

Figure7.2.3. Examples of binary trees

Complete Binary tree:

A binary tree with n nodes is said to be complete if it contains all the first n nodes of the
above numbering scheme. Figure 7.2.4 shows examples of complete and incomplete binary
trees.

A complete binary tree of height h looks like a full binary tree down
to level h- 1, and the level his filled from left toright.

A complete binary tree with n leaves that is not strictly binary has 2n nodes. For example, the
tree of Figure 7.2.3(c) is a complete binary tree having 5 leaves and 10 nodes.

Complete Binary Tree Not Complete and NotCompleteand
butnotstrict notstrict notstrict

(a) (b) (c)

Figure 7.2.4. Examples of complete and incomplete binary trees

Binary Search Tree:

A binary search tree is a binary tree. It may be empty. If it is not empty then it satisfies the following
properties:

1. Every element has a key and no two elements have the same key.
2. The keys in the left subtree are smaller than the key in theroot.

3. The keys in the right subtree are larger than the key in theroot.

118

4. The left and right subtrees are also binary search trees.

Figure 7.2.5(a) is a binary search tree, whereas figure 7.2.5(b) is not a binary search tree.

Binary SearchTree NotaBinarySearchTree

(a) (b)

Figure7.2.5.Examplesofbinarysearchtrees

Data Structures for Binary Trees:

1. Arrays; especially suited for complete and full binary trees.

2. Pointer-based.

Array-based Implementation:

Binary trees can also be stored in arrays, and if the tree is a complete binary tree, this method wastes
no space. In this compact arrangement, if a node has an index i, its children are found at indices 2i+1
and 2i+2, while its parent (if any) is found at index floor((i-1)/2) (assuming the root of the tree stored in
the array at an index zero).

This method benefits from more compact storage and better locality of reference, particularly during a

preorder traversal. However, it requires contiguous memory, expensive to grow and wastes space
proportional to 2"- n for a tree of height h with n nodes.

QO[O0

0 1 2 3 4 5 6

Linked Representation (Pointer based) :

Array representation is good for complete binary tree, but it is wasteful for many other binary trees.
The representation suffers from insertion and deletion of node from the middle of the tree, as it
requires the moment of potentially many nodes to reflect the change in level number of this node. To
overcome this difficulty we represent the binary tree in linked representation.

In linked representation each node in a binary has three fields, the left child
field denoted as Left Child , data field denoted as data and the right child field
denoted as Right Child . Ifany sub- tree isempty then the corresponding pointer’s
LeftChild and Right Child will store a NULL value. If the tree itself is empty
the root pointer will store aNULL value.

The advantage of using linked representation of binary tree is that:

119

' Insertion and deletion involve no data movement and no
movement of nodes except the rearrangement of pointers.

The disadvantages of linked representation of binary tree includes:

' Gi\éen a node structure, it is difficult to determine its parent
node.

' Memory spaces are wasted for storing NULL pointers for the
nodes, which have no subtrees.

The structure definition, node representation empty binary tree is shown in
figure 7.2. 6 and the linked representation of binary tree using this node
structure is given in figure 7.2.7.

struct binarytree node:
{

struct binarytree * LeftChild;

int data; LeftChild|data|RightChild

struct binarytree*RightChild;
3

EmptyTree:
typedef struct binarytreenode; root
NUL L

node*root=NULL;

Figure7.2.6.Structuredefinition,noderepresentationandemptytree

root

o) ® ® © . A\

W O ; :
1 1

N

X |1H|X X111 |X

Figure7.2.7.Linkedrepresentationforthebinarytree

7.3. BINARY TREE TRAVERSAL TECHNIQUES:

Search means finding a path or travers al between a start node and one of
aset of goal nodes. Search involves visiting nodes in a graph in asystemat
ic manner, and may or may not result into a visit to all nodes.

120

When the search necessarily involved the examination of every vertex in the
tree, itis called the traversal.
There are four common ways to traverse abinary tree:

Preorder
Inorder
Postorder
Level order

NS =

In the first three traversal methods, the left subtree of a node is travers
ed before the right subtree. The difference among them comes from the
difference in the time at which aroot node is visited.

Inorder Traversal:

In the case of inorder traversal, the root of each subtree is visited after its left subtree has been
traversed but before the traversal of its right subtree begins. The steps for traversing a binary tree in
inorder traversal are:

1 Visit the left subtree, using inorder.
2. Visit the root.
3. Visit the right subtre e, using inorder.

The algorithm for inorder traversal is as follows:

void inorder(node *root)

{
if(root I= NULL)
{
inorder(root- >Ichild);
print root -> data;
inorder(root- >rchild);
}
}

Preorder Travers al:

In a preorder traversal, each root node is visited before its left and right subtrees are traversed.
Preorder search is also called backtracking. The steps for traversing a binary tree in preorder
traversal are:

1. Visit the root.
2. Visit the left subtree, using preorde r .
3. Visit the right subtre e, using preorder.

The algorithm for preorde r travers al is as follows: void
preorder(node *root)
{

if(root '=NULL)

{

121

print root -> data;
preorde r (root -> Ichild);
preorde r (root -> rchild);

Postorder Traversal:
In a postorder travers al, each root is visited after its left and right
subtree s have been traverse d. The steps for traversing a binary tree in postorde r travers
al are:
1 Visit the left subtree, using postorder.
2. Visit the right subtre e, using postorde r
3. Visit the root.
The algorithm for postorder traversal is as follows:

void postorde r (node *root)

{
if(root '=NULL)
{
postorde r (root -> Ichild);
postorde r (root -> rchild); print
(root -> data);
}
}

Level order Traversal:

In a level order traversal elements are visited by level from top to bottom. Within levels, elements are
visited from left to right. The level order traversal requires a queue data structure. So, it is not possible
to develop a recursive procedure to traverse the binary tree in level order. This is nothing but a
breadth first search technique.

The algorithm for level order traversal isas follows:

void levelorder()

t
int j;
for(j = 0; j <ctr; j++)
{
if(tree[j] '= NULL)
print tree[j] -> data;
}
}

122

Exampl e 1:

Traverse the following binary tree in pre, post, inorder and level order.

Preorder traversal yields:
A B,D, CE G, F H,I

Postorder traversal yields:
D, B, G E, H I, F, C, A

Inorder traversal yields:
D, B, A, E, G, C, H F, I

Level order traversal yields:
A B, C,D, EF G,H, I

Binary Tree Pre, Post, Inorder andlevelorder Traversing
Exampl e 2:

Traverse the following binary tree in pre, post, inorder and level order.

Preordertraversalyields:
P,F,BH,G,S,R, Y, T,W,Z

Postordertraversalyields:
B,G,H,F,RW,T,Z,Y,S,P

Inordertraversalyields:
B,F, G,H,P, R, S, T, W, Y, Z

Levelordertraversalyie lds:
P,F, S, B, H,R, Y, G, T, Z,W

Binary Tree Pre, Post, Inorder andlevelorder Traversing

Exampl e 3:

Traverse the following binary tree in pre, post, inorder and level order.

Preorder traversal yields:
2,7,2,6,5,11,5,9,4

Postorder travarsal yields:
2,5,11,6,7,4,9,5,2

Inorder travarsal yields:
2,7,5,6,11,2,5,4,9

Level order traversal yields:
2,7,5,2,6,9,5,11,4

Binary Tree Pre, Post, InorderandlevelorderTraversing
Exampl e 4:

Traverse the following binary tree in pre, post, inorder and level order.

123

Preordertraversalyields:
o A, B, D, G, K, H L M,C, E

e o Postorder travarsal yields:
o K,G,LM,H,D,B,EC,A

Inordertravarsalyields:
@ 0 K,G,D,LH,M,B,A EC

o o @ Levelordertraversalyields:

A,B,C,D,E,G,H,K,L,M

Binary Tree Pre, Post, InorderandlevelorderTraversing

Formation of Binary Tree from its Travers al:

Sometimes itisrequired to construct abinary tree ifits travers als are known.
From asingle travers al it is not possible to construct unique

binary tree. However if two are travers als then correspon ding tree can be
drawn uniquely. The basic principle for formulation is as follows:

If the preorde rtravers al is given, then the first node is the root node. Ifthe
postorder traversal is given then the last node is the root node. Once the root
node is identified, all the nodes in the left sub- trees and right sub- trees of
the root node can be identified.

Same technique can be applied repeate dly to form sub- trees.

It can be noted that, for the purpose mentioned, two traversal are essential
out of which one should be inorder travers al and another preorde r or
postorde r; alternatively, given preorde r and postorde rtravers als, binary
tree cannot be obtained uniquely.

Exampl e 1:

Construct a binary tree from a given preorder and inorder sequence:

Preorder: ABDGCEHIF
Inorder: DGBAHEICF

Solution:
From Preorder sequence ABDGCEMHIF,the rootis: A

From Inorder sequenc eDGBAHEICF,weget the left and right sub trees:

Leftsubtreeis: DG B
RightsubtreeissHEICF

The Binary tree upto this point looks like:

124

_o.

[DGB] [HEICF]

To find the root, left and right sub trees for D G B:

From the preorder sequence B D G, the root of tree is: B

From the inorder sequence DG B, we can find that Dand Gare to the
left of B.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G:

From the preorder sequence D G, the root of the tree is: D

From the inorder sequence D G, we can find that there is no left node to D and G is
at the right of D.
The Binary tree upto this point looks like:

e HEICF

To find the root, left and right sub trees for HE I C F:

From the preorder sequence C E H | F, the root of the left sub tree is: C

From the inorder sequence H E 1 C F, we can find that H E lare at the
left of C and F is at the right of C.

The Binary tree upto this point looks like:

125

To find the root, left and right sub trees for H E I:

From the preorder sequence E H I, the root of the tree is: E

From the inorder sequence HE I, we can find that H is at the left of E
and | is at the right of E.

The Binary tree upto this point looks like:

126

Example 2:
Construct a binary tree from a given postorder and inorder sequence:

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Postorder: n1 n3 n5 n4 n2 n8 n7 n9 n6

Solution:
From Postorder sequence n1 n3n5n4 n2n8 n7 n9 n 6, the root is: n6

From Inorder sequenc enl n2n3n4n5 n6 n7 n8 n9,we get the leftand
right sub trees:

Left sub tree is: n1 n2 n3 n4 n5 Right
sub tree is: n7 n8 n9

The Binary tree upto this point looks like:

[n1n2n3n4n5} [n7n8n9 J

To find the root, left and right sub trees for n1 n2 n3 n4 n5 :

From the postorder sequence n1 n3 n5 n4 n2, the root of tree is: n2

From the inorder sequence n1 n2 n3 n4 n5,we can find that nl isto the
left of n2 and n3 n4 n5 are to the right of n2.

The Binary tree upto this point looks like:

137

To find the root, left and right sub trees for n3 n4 n5:

From the postorder sequence n3 n5 n4, the root of the tree is: n4

From the inorder sequence n3 n4 n5,we can find that n3 isto the left of
n4 and n5 is to the right of n4.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8 and n9:

From the postorder sequence n8 n7 n9, the root of the left sub tree is: n9

From the inorder sequence n7 n8 n9,we can find that n7 and n8 are to
the left of n9 and no right subtree for n9.

The Binary tree upto this point looks like:

@ () ()

To find the root, left and right sub trees for n7 and n8:

From the postorder sequence n8 n7, the root of the tree is:n7

From the inorder sequence n7n8 , we can find that there is no left
subtree for n7 and n8 is to the right ofn7.

138

The Binary tree upto this point looks like:

Binary Tree Creation and Traversal Using Arrays:
This progra m performs the following operations:

Creates acomplete Binary Tree
Inorder traversal

Preorde rtraversal

Postorder traversal

Level order traversal

Prints leaf nodes

Finds height of the tree created

NOo gk wNE

#include <stdio. h>
#include <stdlib.h >

struct tree

{
struct tree* Ichild;
char data[10];
struct tree* rchild;
I3
typedef struct tree node; int
ctr;

node *tree[100 J;

node* getnode()

node *temp ;

temp = (node*) malloc(sizeof(node));
printf("\n Enter Data: ");

scanf("% s", temp- > dat a);

temp- >Ichild = NULL;

temp- > rchild = NULL;

return temp;

}

void create_fbinarytre e()
{
intj,i=0;
printf("\n How many nodes you want: ");
scanf("% d",& ctr);
tree[0] =getnode();
j=ctr;
J-
do

{
if(j>0)

139

I* left child */

tree[i * 2 + 1] = getnode();
tree[i]- >Ichild =tree[i *2 + 1]; j--

}
if(j>0) [*right child */
tree[i *2 +2] =getnode(); j--
tree[i]- > rchild = tree[i * 2 + 2];
¥
i++;
} while(j > 0);

void inorder(node *root)

if(root I= NULL)

{
inorder(root->Ichild);
printf("%3s",root- >data);
inorder(root- >rchild);

}

}
void preorder(nod e *root)

if(root I= NULL)

{
printf("% 3s",root- >data);
preorder(root- >Ichild);
preorder(root- >rchild);
}
}
void postorder(nod e *root)
{
if(root '= NULL)
{
postorder(root- >Ichild);
postorder(root- > rchild);
printf("% 3 s", root- > data);
}
void levelorder()
{
intj;
for(j = 0; j <ctr; j++)
if(tree[j] '= NULL)
printf("% 3 s", tr ee[j]- > data);
}
}
void print_leaf(node *root)
{
if(root 1= NULL)
{
if(root- >Ichild = = NULL && root- > rchild = = NULL)
printf("% 3 s ",root- > dat a);
print_leaf(root- >Ichild);
print_leaf(root- > rchild);
}
}
int height(node *root)
{

if(root == NULL)
{

140

return O;

}
if(root- >Ichild ==NULL && root- >rchild ==NULL)
return O;
else
return (1 + max(height(root- >Ichild), height(root- > rchild)));

void main()

{ - -
inti;
create_fbinarytre e();
printf("\n Inorder Traversal: ");
inorder(tree[0]);
printf("\n Preorder Traversal: ");
preorder(tree[0]);
printf("\n Postorder Traversal: ");
postorder(tree[0]);
printf("\n Level Order Traversal: ");
levelorder();
printf("\n Leaf Nodes: ");
print_leaf(tree[0]);
printf("\n Height of Tree: %d ", height(tree[0]));

Binary Tree Creation and Traversal Using Pointers:
This progra m performs the following operations:

Creates acomplete Binary Tree
Inorder traversal

Preorde rtraversal

Postorder traversal

Level order traversal

Prints leaf nodes

Finds height of the tree created
Deletes last node

Finds height of the tree created

©ONO O~ WNE

#include <stdio. h>
#include <stdlib.h >

struct tree

{
struct tree* Ichild;
char data[10];
struct tree* rchild;
b

typedef struct tree node;
node *Q[50];
int node_ctr;

node* getnode(void)
{
node *temp ;
temp = (node*) malloc(sizeof(node));
printf("\n Enter Data: ");
fflush(stdin);
scanf("% s", temp- > dat a);
temp- >Ichild = NULL;
temp- > rchild = NULL;
return temp;

}

void create_ binarytr e e(nod e *root)

{

char option;

141

if(root '=NULL)

printf("\n Node %s has Left SubTree(Y/ N)", root- > data); fflush(
stdin);

scanf("% c",& option);

if(option =="Y"| option = ="y")

{

root- >Ichild = getnode();
create_ binarytre e(root- >Ichild);

}
else
{
root- >Ichild = NULL;
create_ binarytre e(root- >Ichild);
}

printf("\n Node %s has Right SubTree(Y/ N) " ,root- > dat a); fflush(
stdin);

scanf("% c",& option);

if(option=="Y"| option = ="y")

root- > rchild = getnode();
create_ binarytre e(root- > rchild);

}
else
{
root- > rchild = NULL;
create_ binarytre e(root- > rchild);
}

void make_Queue(nod e *root,int parent)

if(root 1= NULL)

{
node_ ctr + +;
Q[parent] = root;
make_ Queue(root- >Ichild, parent*2+1);
make_ Queue(root- > rchild, parent*2+2);
}
}
delete_ node(nod e *root, int parent)
{
int index = 0;
if(root = = NULL)
printf("\n Empty TREE ");
else
{
node_ ctr =0;
make_ Queue(root, 0);
index = node_ ctr- 1;
Q[index] = NULL;
parent = (index- 1) /2;
if(2* parent + 1 = = index)
Q[parent]- >Ichild = NULL;
else
Q[parent]- > rchild = NULL,;
}
printf("\n Node Deleted ..");
}
void inorder(node *root)
{

if(root '= NULL)
{
142

inorder(root- >Ichild);
printf("% 3 s", root- > data);

143

inorder(root- > rchild);

}
}
void preorder(nod e *root)
{
if(root '=NULL)
{
printf("% 3s",root- >data);
preorder(root- >Ichild);
preorder(root- >rchild);
}
}
void postorder(nod e *root)
{
if(root '= NULL)
{
postorder(root- >Ichild);
postorder(root- > rchild);
printf("% 3 s", root- > dat a);
}
}

void print_leaf(node *root)

if(root = NULL)

{
if(root- >Ichild == NULL && root- > rchild = = NULL)
printf("% 3 s ",root- > dat a);
print_leaf(root- >Ichild);
print_leaf(root- > rchild);
}

int height(node *root)

if(root == NULL)
return -1;
else
return (1 + max(height(root- >Ichild), height(root- > rchild)));

void print_tree(node *root, int line)

{ . .
inti;
if(root 1= NULL)
{
print_tree(root- > rchild,line + 1) ;
printf("*\n");
for(i=0;i<line;i++)
printf(" ");
printf("% s", root- > data);
print_tree(root- >Ichild,line + 1) ;
}
}
void level_order(node *Q[],int ctr)
{ "
inti,
for(i=0;i<ctr;i++)
if(Q[i] '= NULL)
printf("% 5 s",Q[i]- > data);
}
}
int menu()
{
int ch;

144

clrscr();

printf("\n 1. Create Binary Tree ");
printf("\n 2. Inorder Traversal);
printf("\n 3. Preorder Traversal "); printf("\n
4. Postorde r Traversal ");

printf("\n 5. Level Order Traversal");
printf("\n 6. Leaf Node ");

printf("\n 7. Print Height of Tree ");
printf("\n 8. Print Binary Tree ");
printf("\n 9. Delete a node ");

printf("\n 10. Quit ");

printf("\n Enter Your choice: ");
scanf("% d", &ch);

return ch;
}
void main()
{
inti,ch;
node *root = NULL; do
{
ch =menu();
switch(ch)
{
case 1:
if(root = = NULL)
{
root = getnode();
create_ binarytre e(root);
}
else
{
printf("\n Tree is already Created ..");
}
break;
case 2:

printf("\n Inorder Traversal: ");
inorder(root);
break;

case 3 :
printf("\n Preorder Traversal: ");
preorder(root);
break;

case 4 :
printf("\n Postorder Traversal: *');
postorder(root);

break;
case 5:

printf("\n Level Order Traversal .."); make_
Queue(root, 0);
level_order(Q, node_ ctr);
break;

case 6 :
printf("\n Leaf Nodes: ");
print_leaf(root);
break;

case 7 :
printf("\n Height of Tree: %d ", height(root));
break;

case 8 :
printf("\n Print Tree \n");
print_tree(root, 0);
break;

case 9 :

delete_ node(root, 0);
break;

case 10 :

exit(0);

145

}
getch();
Twhile(1);

Non Recursive Binary Tree Traversal Algorithms:

We can also traverse a binary tree non recursively using stack data structur e for
inorder, preorder and postorder.

Inorder Travers al:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. Ifa
vertex with right son exists, then set right son of vertex as current
vertex and return to step one.

Algorith m inorder()

{
stack[1]=0
vertex = root
top: while(vertex #0)

{

push the vertex into the stack vertex
= leftson(vertex)

}

pop the element from the stack and make it as vertex

while(vertex ~ #0)

{
print the vertex node
if(rightson(vertex) «0)
{
vertex =rightson(vertex)
goto top
}
pop the element from the stack and made it as vertex
}

Preorder Traversal:

146

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

147

1 Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists.

2 Pop the vertex from stack, if vertex #0 then return to step one otherwise exit.

Algorith m preorder()

{
stack[1]=0
vertex = root.
while(vertex)

{

print vertex node
if(rightson(vertex) #0)

push the right son of vertex into the stack.
if(leftson(vertex) #0)

vertex = leftson(vertex)
else
pop the element from the stack and made it as vertex

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push —(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative
node is popped, then ignore the sign and return to step one.

Algorith m postorde r ()

{
stack[1]=0
vertex = root

top: while(vertex #0)

{

push vertex onto stack
if(rightson(vertex) =#0)

148

push — (vertex) onto stack
vertex = leftson(vertex)

}

pop from stack and make it as vertex
while(vertex > 0)

{

149

print the vertex node
pop from stack and make it as vertex

}
if(vertex < 0)
{
vertex =- (vertex)
goto top
}
}
Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

Preordertraversalyields:

e G A, B, D, G, K, H, L, M, C, E

o G Postorder travarsal yields:

e o K,G,L M,H,D,B,EC,A
Inordertravarsalyields:

OEONO K,G,D,LLH,M,B,A.EC

Binary Tree Pre, Post and InorderTraversing

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right son
exists, then set right son of vertex as current vertex and return to step one.

\c/:grt[reim Stack Processed nodes Remarks
A 0 PUSH 0
0OABDGK PUSH the left most path of A
K 0OABDG K POP K
G 0OABD KG POP G since K has no right son
D 0OAB KGD POP D since G has no right son
H 0OAB KGD Make the right son of D as vertex
H OABHL KGD PUSH the leftmost path of H
L 0OABH KGDL POP L
H 0OAB KGDLH POP H since L has no right son
M 0OAB KGDLH Make the right son of H as vertex
0OABM KGDLH PUSH the left most path of M

150

M 0OAB KGDLHM POP M

B 0A KGDLHMB POP B since M has no right son
A 0 KGDLHMBA Make the right son of A as vertex
C OCE KGDLHMBA PUSH the left most path of C

E 0C KGDLHMBAE POP E

C 0 KGDLHMBAEC Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push —(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative
node is popped, then ignore the sign and return to step one.

Current Stack Processed nodes Remarks
vertex
A 0 PUSH 0
PUSH the left most path of A with a
OA-CBD-HGK -ve for right sons
OA-CBD-H KG POP all +ve nodes K and G
H 0OA-CBD KG Pop H
PUSH the left most path of H with a
OA-CBDH-ML KG -ve for right sons
OA-CBDH-M KGL POP all +ve nodes L
M OA-CBDH KGL Pop M
PUSH the left most path of M with a
OA-CBDHM KGL -ve for right sons
0A-C KGLMHDB POP all +ve nodes M, H, D and B
C 0A KGLMHDB Pop C
PUSH the left most path of C with a
OACE KGLMHDB -ve for right sons
0 KGLMHDBECA POP all +ve nodes E, C and A
0 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists.

2. Pop the vertex from stack, if vertex #0 then return to step one otherwise exit.

Current Stack Processed nodes Remarks
vertex
A 0 PUSH 0
0CH ABDG K PUSH the right son of ea_ch vertex onto stack
and process each vertex in the left most path

151

H ocC ABDGK POP H
PUSH the right son of each vertex onto stack
0CM ABDGKHL and process each vertex in the left most path
M ocC ABDGKHL POP M
PUSH the right son of each vertex onto stack
ocC ABDGKHLM and process each vertex in the left most path;
M has no left path
C 0 ABDGKHLM Pop C
PUSH the right son of each vertex onto stack
0 ABDGKHLMCE and process each vertex in the left most path;
C has no right son on the left most path
0 ABDGKHLMCE Stop since stack is empty
Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive

traversing algorithm.

Preorder traversal yields:
2,7,2,6,5,11,5,9,4

Postorder travarsal yields:
2,5,11,6,7,4,9,5,2

Inorder travarsal yields:
2,7,5,6,11,2,5,4,9

Binary Tree

Inorder Traversal:

Pre, Post andInorderTraversing

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right son
exists, then set right son of vertex as current vertex and return to step one.

\C/:gr;reexnt Stack Processed nodes Remarks
2 0
0272
2 027 2
7 02 27
6 0265 27
5 026 275
11 02 275611

152

5 05 2756112
9 094 27561125
4 09 275611254
0 2756112549 Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push —(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative
node is popped, then ignore the sign and return to step one.

\C/:grt[;exnt Stack Processed nodes Remarks
2 0
02-57-62
02-57-6 2
02-57 2
02-576-115 2
5 02-576-11 25
11 02-57611 25
02-5 251167
025-9 251167
02594 251167
0 2511674952 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1 Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists.

2 Pop the vertex from stack, if vertex #0 then return to step one otherwise exit.

\?:r:reexnt Stack Processed nodes Remarks
2 0
056 272
6 0511 27265
11 05 27265
05 2726511
5 09 2726511
0 27265115
0 2726511594 Stop since stack is empty

153

7.4. Expression Trees:

Expression tree is a binary tree, because all of the operations are binary. It is also possible for a node
to have only one child, as is the case with the unary minus operator. The leaves of an expression tree
are operands, such as constants or variable names, and the other (non leaf) nodes contain operators.

Once an expression tree is constructed we can traverse it in three ways:

' Inorder Traversal
' Preorder Traversal
' Postorder Traversal

Figure 7.4.1 shows some more expression trees that represent arithmetic expressions given in infix
form.

(a)(a+b)+(c/d)

(e)((-a)+(x+y))/((+b)*(c a))

Figure 7.4.1 Expression Trees

An expression tree can be generated for the infix and postfix expressions.

An algorithm to convert a postfix expression into an expression tree is as follows:

1. Read the expression one symbol at a time.

2. If the symbol is an operand, we create a one-node tree and push a pointer to it onto a
stack.

3. If the symbol is an operator, we pop pointers to two trees T1 and T2 from the stack (T1 is

popped first) and form a new tree whose root is the operator and whose left and right
children point to T2 and T1 respectively. A pointer to this new tree is then pushed onto the
stack.

Example 1:

Construct an expression tree for the postfix expression:ab+cde +**

The first two symbols are operands, so we create one-node trees and push pointers to them onto a
stack.

154

Next, a ‘+' is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is
pushed onto the stack.

Next, ¢, d, and e are read, and for each one—node tree is created and a pointer to the corresponding
tree is pushed onto the stack.

v

Now a ‘+’ is read, so two trees are merged.

\

5o R

Continuing, a *’ is read, so we pop two tree pointers and form a new tree with a *’ as root.

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is left on the
stack.

155

For the above tree:

Inorder form of the expression: a + b * ¢ * d + e Preorder
form of the expression: *+ab*c+de

Postorde r form of the expression:ab+cde+* *

Example 2:

Construct an expression tree for the arithmetic expression:
(A+B*C)-(D*E+F)/G)

Solution:

First convert the infix expression into postfix notation.

Postfix notation of the arithmetic expressionis: ABC*+DE*F+ G/ -

The first three symbols are operands, so we create one-node trees and pointers to three nodes
pushed onto the stack.

R

Next, a ™" is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is

pushed onto the stack.
’
ONO

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is
pushed onto the stack.

156

Next, D and E are read, and for each one—node tree is created and a pointer to the corresponding
tree is pushed onto the stack.

T
ofo

Continuing, a *’ is read, so we pop two tree pointers and form a new tree with a *’ as root.

Proceeding similar to the previous steps, finally, when the last symbol is read, the expression tree is
as follows:

157

UNIT-5 GRAPHS

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges. We will often
denote n = |V|, e = |E|.

A graph is generally displayed as figure 7.5.1, in which the vertices are
repres ented by circles and the edges by lines.

An edge with an orientation (i.e., arrow head) is a directed edge, while
an edge with no orientation is our undirecte d edge.

If all the edges in a graph are undirected, then the graph is an
undirecte dgraph. The graph of figures 7.5.1(a) is undirecte d graphs. If
all the edges are directed; then the graph is a directed graph. The graph
of figure 7.5. 1(b) isadirected graph. Adirected graph isalso called as
digraph.

A graph Gisconnecte difand only if there is a simple path between any
two nodes in G.

A graph Gissaid to be complete ifevery node a in Gis adjacent to every other

node v in G. A complete graph with n nodes will have n(n- 1)/2 edges. For
example, Figure 7.5. 1.(a) and figure 7.5. 1.(d) are complete graphs.

158

Adirected graph Gissaid to be connecte d, or strongly connected, if for each
pair u, v for nodes in G there is a path from u to v and there is apath from
vto u.On the other hand, G is said to be unilaterally connected if for any
pair u, v of nodes in G there is a path from u to v or apath from vto u. For
example, the digraph shown in figure 7.5.1 (e) isstrongly connected.

% v4 %p
v4 v 2 v4y’ Oy v 2 E)
(d) (e) (f) (9)

Flgure 7.5.1 Vario

2
v
ou

s Graphs

We can assign weight function to the edges: w () is a weight of edge e @ E. The graph which has such
function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in—degree of the vertex (denote indeg(v)). The
number of outgoing edges from a vertex is called out-degree (denote outdeg(v)). For example, let us
consider the digraph shown in figure 7.5.1(f),

indegree(v:) = 2 outdegree(v,) =1

indegree(v,) = 2 outdegree(v,) =0
A path is a sequence of vertices (Vi, Vz, c...vvvennes , Vi), where for all i, (v;, vi.1) BE. A path is simple if all
vertices in the path are distinct. If there a path containing one or more edges which starts from a

vertex V;and terminates into the same vertex then the path is known as a cycle. For example, there is
a cycle in figure 7.5.1 (a), figure 7.5.1 (c) and figure 7.5.1 (d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example, the graphs
of figure 7.5.1 (f) and figure 7.5.1 (g) are acyclic graphs.

A graph G’ = (V, E) is a sub-graph of graph G = (V, E) iff VBV and E' B E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it becomes forest.
The following figure shows a forest F that consists of three trees T1, T2 and T3.

159

n@O ©® © 2 T

AForestF

A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around in a loop). A
spanning tree of a graph G = (V, E) is a tree that contains all vertices of V and is a subgraph of G. A
single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Anytwo vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.
4. Number of edges in T is n-1.

Representation of Graphs:

There are two ways of representing digraphs. They are:

' Adjacency matrix.
' Adjacency List.
' Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n matrix, say A =
(ai,j), where

1
a if there isanedge from i tov;
i .
; 0 otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the graph is
directed. This matrix is also called as Boolean matrix or bit matrix.

B OODN B

o oo ol
O O O KRN
OO F W
orrolb

O O O F Kklol

(a) o Q (b)
510 0 1 1

Figure7.5.2. AgraphanditsAdjacencymatrix

Figure 7.5.2(b) shows the adjacency matrix representation of the graph G1 shown in figure 7.5.2(a).
The adjacency matrix is also useful to store multigraph as well as weighted graph. In case of

160

multigraph representation, instead of entry 0 or 1, the entry will be between number of edges between
two vertices.

In case of weighted graph, the entries are weights of the edges between the vertices. The adjacency
matrix for a weighted graph is called as cost adjacency matrix. Figure 7.5.3(b) shows the cost adjacency
matrix representation of the graph G2 shown in figure 7.5.3(a).

A B CDEF G
AlO0O 3 6 g 7 @0 @
B|3 0 2 4 5 g @
C|6 2 0 1 4 2 p
D|leg 4 1 0 2 g 4

® Elg @ 4 2 0 2 1
Flg g 2 p 2 0 1

Figure7.5.3WeightedgraphanditsCostadjacencymatrix

Adjace ncy List :

In this repres entation, the n rows of the adjacency matrix are repres
entedasnlinked lists. An array Adj[1, 2, n] of pointers where for 1<
v <n, Adj[v] points to a linked list containing the vertices which are adjacent
to v (i.e. the vertices that can be reached from v by asingle edge). If the edges
have weights then these weights may also be stored inthe linked list elements.
For the graph G in figure 7.5.2 (a), the adjacency list in shown in figure 7.5.4 (b).

1 2 3
AN RN 1 1> 2 > 3
2|0 |o |1 2 > 3
3o | 1o s > 2
(a) Adjacency Matrix (b)Adjacencylist

Figure7.5.4Adjacencymatrixandadjacencylist

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then incidence matrix
A is defined as an n by e matrix, say A = (a;,)), where

a1
if there is an edge j incident tov;

' , 0 otherwise

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a matrix is called
as vertex-edge incidence matrix or simply incidence matrix.

161

(b)

d
0
0
1
1
0
0
0

O MM mMoOm>

o O OO O IS
o O OOk O|T
O O Pk OO O
— O OF O O O™
O O OO - O LK
o O POk OO
— O PO OO OoO|—
O, PO OO O
O OO -k O O|X
— —m OO O O OoO|—

a|©O O OFLr O Fr O|0

Figure7.5.4Graphanditsincidencematrix

Figure 7.5.4(b) shows the incidence matrix representation of the graph G1 shown in figure 7.5.4(a).

7.6. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set of the
given graph, and whose edge set is a subset of the edge set of the given graph. i.e., any connected
graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning tree (MST)
is a spanning tree with the smallest possible weight.

Example:

AgraphG:

Three(ofmanypossible)spanningtreesfromgraphG:

A weighted graph G: The minimal spanningtreefromweightedgraph G:

Let's consider a couple of real-world examples on minimum spanning tree:

' One practical application of a MST would be in the design of a network. For instance, a
group of individuals, who are separated by varying distances, wish to be connected
together in a telephone network. Although MST cannot do anything about the distance
from one connection to another, it can be used to determine the least cost paths with no
cycles in this network, thereby connecting everyone at a minimum cost.

' Another useful application of MST would be finding airline routes. The vertices of the
graph would represent cities, and the edges would represent routes between the cities.
MST can be applied to optimize airline routes by finding the least costly paths with no

cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

162

1. Kruskal’s algorithm and

2. Prim algorithm.

Both algorithms differ in their methodology, but both eventually end up with the MST. Kruskal's
algorithm uses edges, and Prim’s algorithm uses vertex connections in determining the MST.

7.6.1. Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking an edge with

the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n’ vertices, keep on adding the shortest

(least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been added.

Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST’s may result,
but they will all have the same total cost, which will always be the minimum cost.

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make the tree T empty.

2. Repeat the steps 3,4 and 5 as long as T contains less than n - 1

edges and E is not empty otherwise, proceed to step 6.

3. Choose an edge (v, w) from E of lowest cost.
4. Delete (v, w) from E.

5. If (v, w) does not create acyclein T

then Add (v,w)to T

else discard (v, w)

6. If T contains fewer than n-1edges then print no spanning tree.

Exampl e 1:

Construct the minimal spanning tree for the graph shown below:

Arrange all the edges in the increasing order of their costs:

Cost 10 15

20

25

30 35 40 45 50

55

Edge 1,2) (3, 6)

(4, 6)

(2,6)

(1,4) (3,5) (2,5) (1,5) (2,3)

(. 6)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

163

Edge Cost Stages in Kruskal’s algorithm Remark s
1,2 10 @_@ The edge between vertices 1and 2 is the first
@ edge selected. Itisincluded in the spanning
@ tree.
(3, 6) 15 @_@ Next, the edge betwee n vertices 3 and 6
e is selected and included in the tree.
(4, 6) 20 @_@ The edge between vertices 4 and 6 is
e next included in the tree.
(2, 6) 25 o o The edge between vertices 2 and 6 is considere d
e next and included in the tree.
1,4) 30 Reiect The edge between the vertices 1 and 4 is discarded
J as its inclusion creates a cycle.
3,5) 35 o o Finally, the edge between vertices 3 and
o 5is considere dand included in the tree
built. This completes the tree.
o e The cost of the minimal spanning tree is
e 105.
Exampl e 2:

Construct the minimal spanning tree for the graph shown below:

Soluti o n:

164

Arrange all the edges in the increasing order of their costs:

Cost

10

12

14

16

18

22

24

25

28

Edge

(1. 6)

3.4)

2.7

(2.3)

4.7

(4,5)

(5. 7)

(5,6)

*.2)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

Reject

Edge Cost Stag e s in Kruskal’ s algorit h m Remark s

(1,6) 10 G The edge between vertices 1and 6 is the first
@ edge selected. Itisincluded inthe spanning

e tree.

3,4 12 e Next, the edge betwee n vertices 3 and 4
@ is selected and included in the tree.

2,7 14 e The edge between vertices 2 and 7 is

next included in the tree.

(2,3) 16 e The edge between vertices 2 and 3 is
a next included in the tree.
. The edge between the vertices 4 and 7 is discarded

@7 18 ReJeCt as its inclusion creates a cycle.

(4,5) 22 The edge between vertices 4 and 7 is considere d
o next and included in the tree.

5,7) 24 The edge between the vertices 5 and 7 is discarded

as its inclusion creates a cycle.

165

(5, 6) 25 o Finally, the edge between vertices 5 and 6 is
o considered and included in the tree built. This
o completes the tree.
° o The cost of the minimal spanning tree is
e 99.
7.6.2. 2. Reachability Matrix (Warshall’s Algorithm) :

Warshall’s algorithm requires to know which edges exist and which do not.
It doesn’ t need to know the lengths of the edges in the given directed graph.
This information is conveniently displayed by adjacency matrix for the graph,
in which a ‘1’ indicates the existence of an edge and ‘0’ indicates non-
existence.

~| AllPairsRechability
Matrix

AdjacencyMatrix WarshallsAlgorithm

It begins with the adjacency matrix for the given graph, which is called
Ao, and then updates the matrix ‘n’ times, producing matrices called Aj,
Ao, , Anand then stops.

In warshall’s algorithm the matrix Ai merely contains information about the
existence of i —paths. A 1entry in the matrix A;j will correspond to the existence
of an i—paths and O entry will correspond to non- existence. Thus when the
algorithm stops, the final matrix, the matrix An, contains the desired
connectivity information.

A lentry indicates apair of vertices, which are connected, and O entry indicates
a pair, which are not. This matrix is called a reachability matrix or path
matrix for the graph. It is also called the transitive closure of the original
adjacency matrix.

The update rule for computing Ai from Ai1in warshall’s algorithm is:

Ai[x, y] = Ai-1[x, y] Y (Ai-1 [x, i] AAi-1 [i, y]) (1)

Exampl e 1:

Use warshall’s algorithm to calculate the reachability matrix for the graph:

166

10 1 1 0
20 0 1 L
A 5% o o 0o

=

41 1 1 0

The first step is to compute ‘A1’ matrix. To do so we will use the updating rule

— ().

Before doing so we notice that only 1 entry in Ao must remain 1 in Ay since
in Boolean algebra 1+ (any thing) =1. Since these are only nine 0entries in Ao,
there are only nine entries in Ao that need to be updated.

A, 1] = AL, 1] ¥ (AO[L, 1] AAO[L, 1]) = O v (0 AQ) = O
Ai[2, 1] = A2, 1] ¥ (AO[2, 1] AAO[L, 1]) = O v (0 A0) = 0
A2, 2] = A2, 2] Y (AO[2, 1] AAO[L, 2]) = O v (0 A1) = 0
A3, 1] = Ao[3, 1] ¥ (AO[3, 1] AAO[L, 1]) = O v (0 A0) = 0
A3, 2] = A3, 2] ¥ (AO[3, 1] AAO[L, 2]) = 0 v (0 A1) =0
Ai[3, 3] = Ao[3, 3] V(AO[3, 1] AAO[L, 3]) = 0v (04A1) =0
Au[3, 4] = Ao[3, 4] v (AO[3, 1] AAO[L, 4]) = O v (0 A0) = O
Aul4, 4] = A4, 4] v (AO[4, 1] AAO[L, 4]) = OV (L A0) = O

10 1 1 O
0 g

20 0 1 1

AB 3% 0o o0 O

411 1 1 0g

Next, A2 must be calculated from As1; but again we need to update the 0
entries,

AL, 1] = AL, 1] v (AL[L, 2] AAL[2, 1]) = 0 v (L A0) = O
AL, 4] = AL, 4] v (AL[L, 2] AAL[2, 4]) =0 v (L A1) = 1
A2, 1] = A2, 1] v (AL[2, 2] AAL[2, 1]) = 0 v (0 A0) = O
A2, 2] = A2 2] v (AL[2, 2] NAL[2, 2]) = 0 v (0 AQ) =0
A3, 1] = A3, 1] v (AL[3, 2] AAL[2, 1)) = 0 v (0 A0) = 0
A3, 2] = A3, 2] V(AL[3, 2] AAL[2,2]) = 0V (0 A0) =0

167

A3, 3] = A3, 3] ¥ (AL[3, 2] AAL[2, 3]) = 0 v (0
A3, 4] = Au[3, 4] v (AL[3, 2] AAL[2, 4]) = 0 v (0
A4, 4] = Au[4, 4] v (AL[4, 2] AAL[2, 4]) = 0 v (L
1w0 1 1 17
A 2 O 0 1 1[
24370 0 0 0
l l
451 1 1 1;

A]_) =0
/\1) =0
/\1) =1

This matrix has only seven 0 entries, and soto compute Az, we need to do

only seven computations.

As[l, 1] = AL, 1] v (A2[1, 3] AA2[3, 1]) = 0 v (L
As[2, 1] = A2, 1] v (A2[2, 3] AA2[3, 1]) = 0 v (L
A2, 2] = A2, 2] v (A2[2, 3] AA2[3,2]) = 0 v (1
As[3, 1] = A3, 1] v (A2[3, 3] AA2[3, 1]) = 0 v (O
As[3, 2] = A3, 2] v (A2[3, 3] AA2[3, 2]) = 0 v (0
As[3, 3] = A3, 3] v (A2[3, 3] AA2[3,3]) =0 v (O
As[3, 4] = A[3, 4] v (A2[3, 3] AA2[3, 4]) = 0 v (0

1[EO 1 1 1EE

9 5% 0 o o

4 [1 1 1 1

A0) =
A0) =
AQ) =
A0) =
AQ) =
A0) =
A0) =

Once A3is calculated, we use the update rule to calculate Asand stop.

This matrix is the reachability matrix for the graph.

Aql, 1] = Az, 1] v (A3[L, 4] rA3[4, 1) =0v (1
Aql2, 1] = Az[2, 1] v (A3[2, 4] rA3[4, 1) =0 v (1
A4l2, 2] = As[2, 2] Y(A3[2, 4] rA3[4, 2)) =0vVv(1
A43, 1] = A3[3, 1] Y (A3][3, 4] rA3[4, 1)) = 0 v (0
A43, 2] = A3[3, 2] Y(A3][3, 4] ~rA3[4, 2]) =0V (0
A3, 3] = As[3, 3] ¥ (A3[3, 4] AA3[4, 3]) = 0 V(0
A43, 4] = As[3, 4] Y(A3][3, 4] rA3[4, 4) =0V (0

111 1 1 1

AR 2%1 1 1 1%

3[0 0 0 OZ

41 1 1 1;

168

Al) =
Al) =
A1) =
A1) =
A1) =
A1) =
A1) =

ovli=1
ovli=1
oOvi=1
Ovo=20
oOovo=20
oOovo=20
oOovo=20

Note that according to the algorithm vertex 3 is not reachable from itself
1. This is because as can be seen in the graph, there isno path from
vertex 3 back to itself.

7.6.3. 3. Traversin ga Graph:

Many graph algorithms require one to systematically examine the nodes and edges of a graph G.
There are two standard ways to do this. They are:

' Breadth first traversal (BFT)
' Depth first traversal (DFT)

The BFT will use a queue as an auxiliary structure to hold nodes for future processing and the DFT
will use a STACK.

During the execution of these algorithms, each node N of G will be in one
of three states, called the status of N, as follows:

1. STATUS =1 (Ready state): The initial state of the node N.

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or
STACK, waiting to be processed.

3. STATUS =3 (Process ed state): The node N has been processed.

Both BFS and DFS impose atree (the BFS/DFS tree) on the structur e of
graph. So, we can compute aspanning tree inagraph. The computed
spanning tree is not a minimum spanning tree. The spanning trees
obtained using depth first searches are called depth first spanning trees.
The spanning trees obtained using breadth first searches are called
Breadth first spanning trees.

Breadt h first searc h and travers al:

The general idea behind abreadth first travers al beginning at a starting node
Ais as follows. First we examine the starting node A. Then we examine all
the neighbors of A. Then we examine all the neighbors of neighbors of A. And so
on. We need to keep track of the neighbors of anode, and we need to
guarant ee that no node is process ed more than once. This is accomplished
by using a QUEUE to hold nodes that are waiting to be process ed, and by
using afield STATUS that tells us the current status of any node. The spanning
trees obtained using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

1 Initialize all nodes to the ready state (STATUS = 1).

2 Put the starting node A in QUEUE and change its status to the
waiting state (STATUS = 2).

169

3. Repeat the following steps until QUEUE is empty:

a Remove the front node N of QUEUE. Process N and change the
status of N to the processed state (STATUS = 3).

b. Addtothe rear of QUEUE all the neighbors of N that are inthe
ready state (STATUS = 1), and change their status to the waiting
state (STATUS = 2).

4. Exit.

Depth first searc hand traversal:

Depth first search of undirecte d graph proceeds as follows: First we examine
the starting node V. Next an unvisited vertex 'W' adjacent to 'V' isselected
and a depth first search from 'W' is initiated. When a vertex 'U'isreached
such that all its adjacent vertices have been visited, we back up to the last
vertex visited, which has an unvisited vertex 'W'adjacent to it and initiate a
depth first search from W. The search terminate swhen no unvisited vertex
can be reache d from any of the visited ones.

This algorithm is similar to the inorder travers al of binary tree. DFT algorithm
issimilar to BFT except now use a STACK instead of the QUEUE. Again field
STATUS is used to tell us the current status of a node.

The algorithm for depth first traversal on a graph G is as follows.
This algorithm executes a DFT on graph G beginning at a starting node A.

1 Initialize all nodes to the ready state (STATUS = 1).

2 Push the starting node Ainto STACK and change its status to the
waiting state (STATUS = 2).

3. Repeat the following steps until STACK is empty:

a Pop the top node N from STACK. Process N and change the status
of N to the processe dstate (STATUS = 3).

b. Push all the neighbors of N that are in the ready state (STATUS
=1), and change their status to the waiting state (STATUS = 2).
4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first order and depth
first order.

170

Nod Adjacency
° e List
A F,C,B
B AC G
A B D,E,F,
< G
D C,FE
o YT
G B,C E K
AGraphG J D, E, K
K AdjacencE’Iist’orJgraph G
Breadt h - first searc h and travers al:
The steps involved in breadth first traversal are as follows:
Cunrtre QUEUE Processed Status
Node Nodes A |B|IC|IDIE|F|G|J |K
1 /1111411111
A 2 (1111|1111
A FCB A 3 /2|2 |1(1|2|11]1
F CBD AF 3 122|213 |1|1]1
C CB_;D E AFC 3 123|122 |3|2|1]1
B DEG AFCB 3 (33|22 |3|2|1]1
D EGJ AFCBD 3 (33|32 |3|22]1
E GJK AFCBDE 3 (33|33 |3|22]2
G JK AFCBDEG 3 |3|3|3|3|3|3|2]2
J K AFCBDEG] 3 (33|33 |3|3|3]2
K |empry |#FCBPECI 13151313133 /3|33
For the above graph the Breadth first traversal sequenceis: AFCBDE G J K.
Depth-first search and traversal:
The steps involved in depth first traversal are as follows:
Cur:tre Stack Processed Status
Node Nodes A |B|C|ID|E|F|G|J |K
1 /11|11 /1|1 1|1
A 2 (1111|1111
A BCF A 3 1221|1211 |1
F BCD AF 3 1222|131 /1|1

171

D I|BCEJ |AFD 3 (2121312131121
J E C E|AFDJ 3 |21203]2]3/13]2
K g C E|AFDIJK 3 (20203232133
G |BCE |AFDJKG 3202132133133
E |BC AFDJKGE 3 1202131313313 13
c |8 AFDJKGEC |3 |2/3/3/3333 |3
B | EMPTY SFDJKGEC 2 13 l3lalslslslsls

For the above graph the Depth first traversal sequence is: AF D J K G E CB.

Exampl e 2:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first
and depth first spanning trees.

Node Adjacency List
A F,B,C G
B A
C A G
D E,F
E G,D,F
F A E D
G AL EHIJC
H G, I
The Gr aph G I H
J GLKM
K J
The Ia'djace c&j!is‘g’f(!ylthe graph G
VI L,J

If the depth first travers al is initiated from vertex A, then the vertices of graph
G are visited inthe order: AF ED GLJK M H 1 C B. The depth first
spanning tree is shown in the figure given below:

Depth first Traversal

172

If the breadth first travers al is initiated from vertex A, then the vertices of
graph G are visited inthe order: AF B C G E DL HJ M I K. The breadth
first spanning tree is shown in the figure given below:

Breadth first traversal

Exampl e 3:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first
and depth first spanning trees.

GraphG

L [FEEEY

: | L
e RE 1%

o [HEFEY

s [HEEEY

o | HEEHED

AR EBE DY

o [HE O

Adj acency listfor gr aph G

If the depth first is initiated from vertex 1, then the vertices of graph G are
visited in the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree isas
follows:

173

Depth First Spanning Tree

Breadt h first searc h and travers al:

If the breadth first search is initiated from vertex 1, then the vertices of G
are visited in the order: 1,2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is
as follows:

Breadth First Spanning Tree

7.7. .General Tree s(m- arytree):

Ifin atree, the outdegr ee of every node is less than or equal to m, the tree
is called an m- ary tree. If the outdegre e of every node is exactly equal tom
or zero then the tree is called a full or complete m-ary tree. For m=2, the
trees are called binary and full binary trees.

Differences between trees and binary trees:

TREE BINARY TREE
Each element in a tree can have any number of | Each element in a binary tree has at most two
subtrees. subtrees.
The subtrees of each element in a binary tree
The subtrees in a tree are unordered. are ordered (i.e. we distinguish between left and
right subtrees).

174

Convertin gam- ary tree (gen eraltree) toabinary tree:

There isaone- to- one mapping between general ordered trees and binary trees.
So, every tree can be uniquely represented by a binary tree. Further mor
e, aforest can also be represe nted by abinary tree.

Conversion from general tree to binary can be done in two stages.

' As a first step, we delete all the branches originating inevery
node except the left most branch.

' We draw edges from anode tothe node on the right, if any,
which is situated at the same level.

' Once this is done then for any particular node, we choose its left
and right sons in the following manner:

' The left son is the node, which is immediately below the given
node, and the right son is the node to the immediate right of the
given node on the same horizontal line. Such a

binary tree will not have a right subtree.

Example 1:

Convert (Encoding m-ary trees as binary trees) the following ordered tree into a binary tree.

Solution:

Stage 1 tree using the above mentioned procedure is as follows:

Stage 2 tree using the above mentioned procedur e is as follows:

175

Exampl e 2:

Construct aunique binary tree from the given forest.

Solution:

Stage 1 tree using the above mentioned procedure is as follows:

(O—)
oo 8 @ 10
O— © W (12—

Stage 2 tree using the above mentioned procedure is as follows (binary tree representation of forest):

176

Searc h and Travers al Techn iq u e s for m- ary tree s:

Search involves visiting nodes in a tree in a systematic manner, and may or may not result into a visit
to all nodes. When the search necessarily involved the examination of every vertex in the tree, it is
called the traversal. Traversing of a tree can be done in two ways.

1 Depth first search or traversal.

2 Breadth first search or traversal.

Depth first searc h:

In Depth first search, we begin with root as a start state, then some successor
of the start state, then some successor of that state, then some successor of that
and so on, trying to reach a goal state. One simple way to implement depth
first search is to use a stack data structure consisting of root node as a start
state.

If depth first search reaches astate Swithout successors, or ifall the successors
of a state S have been chosen (visited) and a goal state has not get been
found, then it “backs up” that means it goes to the immediately previous
state or predec essor formally, the state whose successor was ‘S’ originally.

To illustrat e this let us consider the tree shown below.

MOS0)
L) con

Suppose Sis the start and G is the only goal state. Depth first search will

177

first visit S, then A, then D. But Dhas no successors, so we must back up to
Aand try its second successor, E. But this doesn’t have any successors either, so
we back up to A again. But now we have tried all the

successors of Aand haven’t found the goal state Gso we must back to ‘S’.
Now ‘S’ has asecond successor, B. But B has no successors, so we back up

to Sagain and choose its third successor, C. C hasone

successor, F. The first successor of FisH, and the first of H is J. Jdoesn’t have
any successors, so we back up to Hand try its second successor.

And that’s G, the only goal state.

So the solution path to the goal is S, C, F, H and G and the states considere
dwere inorder S,A,D,E,B,C,F, H, J,G.

Disadvantages:

1 It works very fine when search graphs are trees or lattices, but can
get struck in an infinite loop on graphs. This is becaus edepth first
search can travel around a cycle in the graph forever.

To eliminate this keep a list of states previously visited, and
never permit search to return to any of them.

2 We cannot come up with shortest solution to the problem.

Breadt h first searc h:

Breadth-first search starts at root node S and “discovers" which vertices are reachable from S. Breadth-
first search discovers vertices in increasing order of distance. Breadth-first search is named because it
visits vertices across the entire breadth.

To illustrate this let us consider the following tree:

S OS'0 &
G0 con

Breadth first search finds states level by level. Here we first check all the
immediate successors of the start state. Then all the immediate successors
of these, then all the immediate successors of these, and so on until we find
a goal node. Suppose S is the start state and G is the goal state. In the
figure, start state S is at level 0; A, B and C are at level 1; D, eand F at level
2; Hand I at level 3; and J, G and K at level 4.

178

So breadth first search, will consider in order S, A, B, C, D, E, F, H, I, J and
G and then stop because it has reached the goal node.

Breadth first search does not have the danger of infinite loops as we consider
states in order of increasing number of branches (level) from the start state.

One simple way to implement breadth first search isto use aqueue data structur
e consisting of just a start state.

7.8. Sparse Matrices:

A sparse matrix is a two—dimensional array having the value of majority elements as
null. The density of the matrix is the number of non-zero elements divided by the total
number of matrix elements. The matrices with very low density are often good for use
of the sparse format. For example,

20 0 0 50

1 i
Al %0 2 0 O
1 3 0 o0
I I

70 0 4 Op

As far as the storage of a sparse matrix is concerned, storing of null elements is
nothing but wastage of memory. So we should devise technique such that only non-
null elements will be stored.

The matrix A produces:

(3,1) 1
2,2) 2
S= (3,2 3
4,3) 4
(1,4) 5

The printed output lists the non-zero elements of S, together with their row and
column indices. The elements are sorted by columns, reflecting the internal data
structure.

In large number of applications, sparse matrices are involved. One approach is to use
the linked list.

The progra mto repre sentspars e matrix:

I* Check whethe rthe given matrix is sparse matrix or not, if so then
print in alternative form for storage. */

include <stdio.h>
#include <conio.h>

179

main()

int matrix[20][20], m, n, total_eleme nts, total zeros =0, i, j; clrscr();
printf(*\n Enter Number of rows and columns: "); scanf(*% d

%d",& m, &n);

total_elements = m * n;

printf(*\n Enter data for sparse matrix: "); for(i = 0; i

<m;it++)

{

¥

for(j=0;j<n;j++)

{
scanf("% d", &matrix[i][j]);
if(matrix[i][j] == 0)
{
total _zeros++;
}
}

if(total_zeros > total_element s/ 2)

{

else

printf(*\n Given Matrix is Sparse Matrix..");

printf("\n The Represent a ion of Sparse Matrix is: \n"); printf("\n
Row \t Col \t VValue ");

fori=0;i<m;i++)

{ for(j=0;j<n;j++)
¢ if(matrix[i][j] != 0)
¢ printf(*\n %d \t %d \t %d",i,j,matrix[i][j]);
¥ : }

printf("\n Given Matrix is Not a Sparse Matrix..");

180

