
PADMASHREE KRUTARTHA ACHARYA
INSTITUTE OF ENGINEERING &

TECHNOLOGY BARGARH

Operating system lab manual

4th semester

Computer science & engineering

Scanned by CamScanner

DOS COMMANDS

Introduction

Command Format

Parameters

Options

Some course material on the Teaching Network may still use the
command line operating system called DOS (Disk Operating System).
This requires the user to type specific commands at a prompt.

You may also need to use this system, for example, when changing your
password, and you can enter DOS by choosing 'MS-DOS Prompt' from
the Public menu on the taskbar.

Commands can be typed in response to the network DOS prompt:

G:\>

Commands may be typed in upper or lower case. Here, they are
specified in upper case to distinguish them from other input.

Commands have a particular format. Some can be used simply by typing
the command name only, as in:

DIR

which displays a listing of files in the current directory.

Many commands can take extra information called parameters to make
them more specific, For example, the COPY command can have a
parameter specifying a file to be copied and a parameter specifying a file
to which the copy is to be made. So the command would look like this:

COPY filea fileb

In this case, filea would be the name of a file to copy from and fileb
would be the name of a file to copy to.

Parameters can sometimes be omitted in which case a default action will
apply.

Commands can also be qualified by the use of options. Options are

preceded by a / sign. A simple example of the use of an option is with the
DIR command. DIR can be qualified by /P or /W. Thus the commands:

DIR

DIR /W

DIR /P

result in listings presented in a different format as detailed later.

Some Useful DOS Commands

COPY Make a copy of a file or merge files together.

COPY original-file destination-file

where original-file and destination-file are file names, separated by a space.

The command can be used to merge several files into one file since the original-file

parameter can be a list of filenames separated by the + symbol. For example:

COPY file1 + file2 file3

would copy file1 and file2 into file3.

Note that the file names used in the copy command m ust include the file extension if

it exists. So if you were copying a fortran program called first.for, for example, you

would need to include the .for extension in the filename.

 DEL Delete a file.

DEL filename

where filename is the name of the file to be deleted. You are asked to confirm that you
really want to delete the file. Note that the name must include the file extension.

The amount of space on a disk is limited and it is necessary periodically to tidy up
unwanted files. It is possible to use a '*' character in a filename to match any sequence
of characters. This feature is very useful when deleting unwanted files with identical
extensions. For example, when developing programs,

DEL *.obj

will delete every binary (.obj) file in the current directory. Since an .obj file can always

be recreated from the original source program, it is usually unnecessary to keep it.

 DIR Obtain a list of the files stored in a directory.

If used without options this command will give a list of files in the current directory,

including any extension (e.g. .for), and their size.

If used with the option /P, that is:

DIR /P

The same information will be displayed page by page with the message:

strike a key when ready

at the end of each page.

If it is used with the /W option, i.e.

DIR /W

the listing is of names and extensions only and in a more compact format across the page.

DISKCOPY

LIST

RENAME

Take a security copy of your working disk.

It is very important to have a second copy of your programs and data in
case you lose your disk or it becomes unreadable for some reason. Use
the DISKCOPY command as follows:

DISKCOPY A: A:

where A: denotes the drive the disks will be loaded into. When a copy of
your disk is generated in the computer's memory, the computer tells you to
remove the first or source disk and insert the disk, which is to become the
copy (the target disk).

Insert the target disk and press ENTER. If the second disk is not formatted
it will be formatted automatically. The source disk should be write
protected using the tab in the corner in case you mistake it for the target
disk (see the chapter on using disks).

Obtain a printed listing of a file.

LIST filename

where filename is the file to be printed. If the printer is busy, or if you don't
need a printed copy, you can use the TYPE command to view a file on the
screen.

You could also use an editor such as DOS Edit to display a file, in which
case, as a bonus, you would then be in a position to correct any errors you
might notice. Remember that the file name must include the file extension.
So if you want to print your Pascal program called first you would need to
use:

LIST first.pas

Change the name of a file. This command can be abbreviated to REN:

REN oldname newname

where oldname is the file to be renamed and newname is the name it is to be given.

Note that files on drives other than the current drive can be referred to by prefixing

the filename by the relevant drive letter, for example:

A:\filename

where the \ refers to the ‘root’ directory of the drive.

Filenames can also include directories separated by the \ character as in:

A:\dir1\dir2\filename

TYPE

FORMAT

DOS Conventions

The Commands

View a file on the screen.

TYPE filename

where filename is the name of the file to be displayed on the monitor
screen. If you are looking at a long file, you will need to press the PAUSE

key to stop continuous scrolling. Press the space bar to continue scrolling
when you have read the screen.

To format a floppy disk, place the disk in the floppy drive and type:

FORMAT A:

Note that by default the disk will be formatted to hold about 1.44
megabytes of data.

Warning: formatting will destroy any data on the disk so only do this
once!

DOS Command Listing
In the following section, alternative options are separated by the ‘!’
character. Arguments are optional unless in italics. ‘cwd’ stands for
‘Current Working Directory’.

DOS commands are not case sensitive. Some commands have switches;
these must be preceded by a forward slash (/).
Pathnames may be preceded by a drive letter as in
‘X:pathname’ and if no drive or pathname is given the current directory is
assumed.

ATTRIB +!-r +!-a pathnam e
 display, or set!clear Read-only or

Archive attribute

BREAK on!off

display, or turn on!off increased level of ^C detection

CHDIR (CD) path display, or change working directory

CHKDSK pathname (A: drive only) check disk or file logical

structure /f - fixproblems encountered

 /v - verbose; displays filespecs

CLS

clear screen

COMMAND path cttydev

run nested CLI from path with I/O device cttydev

 /e:# - set environment size #

 /p - do not invoke another CLI

/c command - run command and then enter

COPY pathname pathname

or

COPY pathnam e + pathnam e

copy or concatenate files

 /v - verify writes

/a!b - preceding and all subsequent files are ascii! binary (* filenames in
source(s) and target are matched one-to-one.)

CTTY device change MS-DOS I/O device

DATE dd-mm-yy

display and/or set date (numerical country-dependent format)

DEL ! ERASE pathnam e

delete file(s) - prompts if pathname is *.*

DIR pathname

display directory - filename and/or ext default to *

 /p - paginate

 /w - multi-column

DISKCOPY drive: drive:

copy disk sector-by-sector rather than file-by-file

EXIT

exit nested CLI

FIND “string” pathname find and display lines containing string in file

 /v - lines NOT containing string

 /c - count lines only

 /n - display line numbers also

FORMAT drive: (A: drive only)

 /1 - single sided

 /4 - use double rather than high density (40 tracks)

 /8 - use 8 sectors of each track

/n:xx - specifies xx sectors per track

 /t:yy - specifies yy tracks

 /v - prompt for volume label, up to 11 characters

/f:720 - format at 720 kb

LABEL drive: label (A: drive only) display, or edit volume label - 11 characters

excluding most specials

MKDIR (MD) path make directory

MODE

interactively configure various options

MORE

 paginates screen output

e.g. type filename | more

PATH path;path;... display or set command search path(s) to be used after cwd

PATH;

 resets default to cwd only

PROMPT string

reset or set prompt.

Characters (each prefixed by $) mean: $=$, t=time, d=date, p=cwd,

v=version, n=drive, g=>, l=<, b=!, _=CRLF, s=leading space, e=ESC (for

ANSI driver)

RENAME (REN)pathnam e pathnam e

rename file(s) within a drive - wildcards are matched one-to-one

RMDIR (RD) path remove empty directory

SET variable=text display all, set or clear MS-DOS variable - accessed as

%variable%

SHARE

enable networked multi-access file locking

/f:nbytes - nbytes per file, need about 20 bytes per file,

default 2048

/l:nlocks - nlocks per file, default 20

SORT pathname pathname

sort lines of file alphabetically, ignoring case, to file or

stdout; reads stdin by default

 /r - reverse order

 /+n - on n’th character in each line, default is first

SUBST drive: path (A: drive only) display substitutions, or substitute path by virtual

drive

SYS drive: (A: drive only) copy hidden MS-DOS .sys files from default drive

TIME hours:minutes display and/or set time using 24-hour format

TYPE pathnam e

output contents of a file, with tab spacing of 8

VER

display MS-DOS version

VERIFY on!off

display, or set!clear disk write verification

VOL drive:

display disk volume label

XCOPY pathnam e pathname

copy directory tree

 /a!m - if archive bit set ! also clears in source

/d:date- modified on or after date only

 /s!e - copy subdirectories if not empty ! even if empty

 /p - prompt

 /v - verify

 /w - wait for keypress

If renamed to MCOPY it determines automatically whether target is file or directory.

On-Line Command Help

Command Editing

Batch File
Commands

Full details of all DOS commands can be seen by following the command
with the switch /? For example,

DIR /?

gives a listing of all DIR options.

DOS commands are stored in a template and previous commands can be
recalled, character by character enabling editing as required.

The template is accessed by the following keys:-

F1 - get next character from template

F2 C - get characters up to but excluding character C F3

 - get remaining characters from template del -

 skip one character in template

F4 C - skip characters up to but excluding character C
ESC - clear command line

INS - toggle overwriting of template

F5 - copy command to template for re-editing F6 - put ^Z in new

template

The arrow keys may also be used to recall the previous command.

All DOS commands may be used in batch files. Additionally, the
following commands are useful for more advanced batch processes.

Arguments for batch files are accessed as ‘%1’ to ‘%9’.

ECHO on!off!message display echo status, turn echoing on!off (default on) or

display message

FOR %%C IN (SET of items) DO command

C is any character other than 0-9, SET is e.g. list of files

GOTO LABEL

LABEL is any line of text, usually preceded by colon (:) in first column, which

makes MS-DOS ignore it other than as a label. Terminates if label not found

IF ERRORLEVEL num ber com m and

command executed if previous command returned exit code >= number

IF string1 == string2 command command executed if strings match

may be negated by NOT before condition

IF EXIST filenam e com m and command executed if file exists may

be negated by NOT before condition

PAUSE comment

comment displayed only if echo on

REM comment

remark - ignored by MS-DOS

SHIFT

shift arguments - allows access to more than 9

Special Characters

File Comparison Utility

Several special characters may be used when referring to directories and
files:

\ = root directory or a directory separator

. = current directory ..

 = parent directory

Wildcard characters may be used in filenames or extensions:

? = any character
* = any tail or extension
X: - switches to current working directory (cwd) on drive X.

The FC command enables comparison of two files:

FC pathnam e1 pathname2

compare two files, or two wildcarded sets of files

 /a - abbreviate output of ASCII comparison

 /b - force binary comparison (byte-by-byte)

 /c - ignore case

 /L - force ASCII comparison (line-by-line)

 /Lb# - use line buffer of # lines

 /n - display line numbers in ASCII mode

 /t - do not expand tabs - default expands to spacing

of 8

/w - compress white space (tabs and spaces) to single space (leading or
trailing white space always ignored)

/# - # lines must match to re-synchronize else regarded different (default is 2)

I/O Control

DOS input and output may be controlled by the following control key sequences. (^ =

the CTRL key).

 ^C - abort current command
^H - destructive backspace

^J - linefeed - physical newline to input long lines

^N - toggle copying of terminal output to printer
^P - toggle redirection of terminal output to printer

^S - suspend/restart terminal output

^X - cancel current line, and output \ -CR-LF
^Z - end of file

I/O Redirection

Using The

DOS Editor

Input and output from commands or programs can be redirected by using
the following symbols:

 > send output to...

 >> append output to...
 < take input from...

 | pipe output to next input

For example:

pipe output from command a to input of command b:
command a | command b

send a directory listing to file filename: DIR >
filename

DOS includes a full-screen editor invoked by the EDIT command (with or

without a filename). To use this editor type:

EDIT (filenam e)

The editor provides pull-down menus, operated by the keyboard or mouse, and a help
facility. Note that any changes made to a file overwrites the original, no backup is
created.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

#WRITE A SHELL SCRIPT TO PRINT THE COMMAND LINE
ARGUMENTS IN REVERSE ORDER

#!/bin/bash

if [$# -eq 0]

then

echo "$0 num1,num2,numn"

exit 1

fi

x=""

echo -n "Numbers are:"

for n in $@

do echo -n $n

echo -n " "

x="$n $x"

done

echo ""

echo -n "Reverse order:"

echo $x

#WRITE A SHELL SCRIPT TO CHECK WHETHER THE GIVEN
NUMBER IS PALINDROM OR NOT

#!/bin/bash

echo "Enter a number"

read n

r=0

rev=0

temp=$n

while(($n>0))

do

r=$(($n%10))

rev=$((((rev*10))+r))

n=$((n/10))

done

if(($temp==$rev))

then

echo "The enter number is palindrom"

else

echo "the enter number is not palindrom"

fi

#WRITE A SHELL SCRIPT TO SORT THE GIVEN ARRAY ELEMENTS
IN ASCENDING ORDERS USING BUBBLE SORT

#!/bin/bash

clear

a=(10 8 20 100 12)

echo "Array in original order"

echo ${a[*]}

for((i=0; i<5;i++))

do

for((j=i;j<5-i-1;j++))

do

if ((${a[$j]}>${a[$((j+1))]}))

then

temp=${a[$j]}

a[$j]=${a[$((j+1))]}

a[$((j+1))]=$temp

fi

done

done

echo "Array in sorted order"

echo ${a[*]}

#WRITE A SHELL SCRIPT TO READ YOUR NAME , COLOUR AND
PRINT THE SAME ON THE SCREEN

#!/bin/bash

clear

echo -n "what is your name?"

read name

clear

echo "Hello $name"

echo "what is your favorite color?"

read color

echo "$color is a good color"

echo "now saving that info"

echo "$name favorite color is $color" >> color.log

echo "date saved."

echo "Please press enter to continue"

read

clear

echo " Have a good day $name"

WRITE A SHELL SCRIPT TO PERFORM BINARY SEARCH ON A
GIVEN ARRAY ELEMENTS

#!/bin/bash

clear

echo "read the limit"

read n

for((i=0;i<n;i++))

do

read m

a[i]=$m

done

for((i=1;i<n;i++))

do

for((j=0;j<n-i;j++))

do

if((${a[$j]}>${a[$((j+1))]}))

then

t=${a[$j]}

a[$j]=${a[$((j+1))]}

a[$((j+1))]=$t

fi

done

done

echo "sorted Array is"

echo ${a[*]}

echo "Enter the element to be searched"

read s

lb=0

ub=$((n-1))

c=0

while(($lb<$ub))

do

mid=$(((($lb+$ub))/2))

if(($s==${a[$mid]}))

then

c=1

break

elif(($s<${a[$mid]}))

then ub=$((mid-1))

else

lb=$((mid+1))

fi

done

if(($c==1))

then

echo "the Element is found at position $((mid+1))"

else

echo "the Element is not found in the list"

fi

#WRITE A SHELL SCRIPT TO ACCEPT ANY TWO FILE NAME AND
CHECK THEIR FILE PERMISSION

#!/bin/bash

echo "Enter the file name"

read file

[-w$file]&&W="Write=yes"||W="Write=no"

[-x$file]&&X="Execute=yes"||X="Execute=no"

[-r$file]&&R="Read=yes"||R="Read=no"

echo "File Permission"

echo "$W"

echo "$X"

echo "$R"

WRITE A SHELL SCRIPT TO ILLUSTRATE THE CASE STATEMENT

#!/bin/sh

FRUIT="kiwi"

case "$FRUIT" in

 "apple") echo "Apple pie is quite tasty."

 ;;

 "banana") echo "I like banana nut bread."

 ;;

 "kiwi") echo "New Zealand is famous for kiwi."

 ;;

esac

#WRITE A SHELL SCRIPT TO DEMONSTRATE TERMINAL LOCKING

#!/bin/sh

echo "Enter a password"

read pass1

echo "Renter password"

read pass2

if [$pass1 = $pass2]

then

 echo "Keyboard is locked"

 trap " " 20 30 15 9 2 1 3

 echo "Enter your password to unlock the screen"

 read upass

 while ["$pass2" != "$upass"]

 do

 echo "password is wrong !! "

 echo "Renter password"

 read upass

 done

else

 echo "Password doesn't match"

fi

SHELL SCRIPT TO ACCEPT THE VALID LOGIN NAME, IF THE LOGIN
NAME IS VALID THEN PRINT ITS HOME DIRECTORY ELSE AN
APPROPRIATE MESSAGE

#!/bin/sh

Clear

if [$# -eq 0]

then

echo "No command line argument passed"

exit

fi

while [$1]

do

cat /etc/passwd | cut -d ":" -f1 | grep "^$1" > temp

ck=`cat temp`

if ["$ck" != "$1"]

then

echo "ERROR:$1 is an invalid login name"

else

echo "Home Directory for $1 is"

echo `cat /etc/passwd | grep "^$1" | cut -d ":" -f6`

fi

shift

done

#WRITE A SHELL SCRIPT TO READ A FILE NAME AND CHANGE THE
EXISTING FILE PERMISSIONS

#!/bin/bash

source /generic/utils/etc/environments/perm.conf

cd $ENVR

DIRS=`ls -l $ENVR | egrep '^d' | awk '{print $9}'`

for DIR in "${DIRS[@]}";

do

echo "$DIR"

echo "Which environment do you want?: "

echo -n "> "

read i

echo "Changing permissions now..."

sudochown -R $OWN:$GRP "$i" &&sudochmod -R $MOD1 "$i"

#cd $ENVR/$i

#sudochmod -R $MOD2 *

echo "Permissions are changed!"

done

#WRITE A SHELL SCRIPT THAT DISPLAY A MENU THAT

CONSISTING OF OPTION TO DISPLAY DISK SPACE, THE CURRENT

USER LOGGED IN , TOTAL MEMORY USAGE ETC.

#!/bin/bash

clear

echo “1. size of the hard disk”

echo “2. your user name”

echo “3.currently logged in users”

echo “4.current date and time”

echo “5. total memory usage”

echo “6.cpu load”

echo “7. exit”

echo

echo

echo “Enter your option”

read n

case $n in “1”)

df –H | grep –vE ‘^Filesystem’ | awk ‘{print $1 “ “ $2}’;;

”2”)

Echo “Your user name: $(echo users)”;;

“3”)

Echo “Currently login users:”

Who;;

“4”)

Echo “ current date and time:” $(date);;

“5”)

Echo””

Free –m | awk ‘NR==2{ printf”memory usage:%s%MB(%.2f%%)\n”,

$3,$2,$3*100/$2}’;;

“6”)

Top –bn1 | grep load | awk ‘{printf”CPU Load:%.2f\n”, $(NF-2)}’;;

“7”)

Echo “Have a nice day”;;

*)

Echo “entered wrong option”;;

esac

#WRITE A C-PROGRAM TO FORK A CHILD PROCESS AND EXECUTE
THE GIVEN LINUX COMMANDS.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

int main() {

pid_tforkStatus;

forkStatus = fork();

/* Child... */

if (forkStatus == 0) {

printf("Child is running, processing.\n");

sleep(5);

printf("Child is done, exiting.\n");

/* Parent... */

} else if (forkStatus != -1) {

printf("Parent is waiting...\n");

wait(NULL);

printf("Parent is exiting...\n");

} else {

perror("Error while calling the fork function");

}

return 0;

}

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/perror.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

#WRITE A PROGRAM TO FORK A CHILD AND PRINT THE PROCESS
ID OF PARENT AND CHILD PROCESS.

int main()

{

int i;

printf("hello before fork \n");

printf("i : %d\n",i);

 i=fork();

printf("\n");

if(i==0)

 {

printf("Child has started\n\n");

printf("child printing first time \n");

printf("getpid : %d getppid : %d \n",getpid(),getppid());

sleep(5);

printf("\nchild printing second time \n");

printf("getpid : %d getppid : %d \n",getpid(),getppid());

 }

else

 {

printf("parent has started\n");

printf("getpid : %d getppid : %d \n",getpid(),getppid());

printf("\n");

 }

printf("Hi after fork i : %d\n",i);

return 0;

}

#WRITE A C PROGRAM TO PROMPT USER FOR THE NAME OF THE
ENVIORNMENT VARIABLE , CHECK IT’S VALIDITY AND PRINT THE
MESSAGE

#include <stdio.h>

int main(int argc, char *argv[], char * envp[])

{

int i;

for (i = 0; envp[i] != NULL; i++)

printf("\n%s", envp[i]);

getchar();

return 0;

}

#WRITE A C PROGRAM TO RAED DETAILS OF N STUDENTS SUCH
AS NAME, REGD NUMBER, AGE, SEMESTER. FIND THE ELDEST OF
THEM AND PRINT HIS DETAILS

#include <stdio.h>

struct student {

 char Name[50];

 int regd;

 char sem[8];

 int age;

} s[10];

int main() {

 int i, Max,n,eld;

 printf(“Enter the number of students(Maximum 10)\n”);

 scanf(“%d”,&n);

 printf("Enter information of students:\n");

 // storing information

 for (i = 0; i < n; ++i) {

 printf("Enter name: ");

 scanf("%s", s[i].Name);

 printf("\nEnter regd no");

 scanf(“%d”, &s[i].regd);

 printf("Enter semester: ");

 scanf("%s", s[i].sem);

 printf("Enter age: ");

 scanf("%d", &s[i].age);

 }

 Max=s[0].age;

 for (i = 1; i < n; ++i) {

if (s[i].age>Max)

{

Max=s[i].age;

eld=i;

}

}

 printf("Displaying Information of eldest student:\n\n");

 // displaying information

 printf("name: ");

 puts(s[eld].Name);

 printf("\nRegd number: %d\n", s[eld].regd);

 printf("Semester: ");

 puts(s[eld].sem);

printf(“Age: %d”,s[eld].age);

 printf("\n");

 return 0;

}

